- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在四边形ABCD中,AB=AD,∠ABC+∠ADC=180°,E、F分别是边BC,边CD上的两点.
(1)若∠ABC=∠ADC,∠BAE=30°,AD=3,求AE的长;
(2)若∠EAF=
∠BAD,求证:BE+DF=EF.
(1)若∠ABC=∠ADC,∠BAE=30°,AD=3,求AE的长;
(2)若∠EAF=


如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,但绳子不够长.他叔叔帮他出了一个这样的主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度.
(1)DE=AB吗?请说明理由;
(2)如果DE的长度是8 m,则AB的长度是多少?

(1)DE=AB吗?请说明理由;
(2)如果DE的长度是8 m,则AB的长度是多少?
如图,在△ABC中,∠A=50°,∠B=∠C,点D,E,F分别在边BC,CA,AB上,且满足BF=CD,BD=CE,∠BFD=30°,则∠FDE的度数为( )


A.75° | B.80° | C.65° | D.95° |
在平面直角坐标系中,点A坐标是(0,a),点B坐标是(b,0),且a、b满足a2﹣12a+36+
=0
(1)求A、B两点的坐标;
(2)如图1,点C为x轴负半轴一动点,OC<OB,BD⊥AC于D交y轴于点E,求证:DO平分∠CDB;
(3)如图2,点F为AB中点,点G为x轴正半轴点B右侧一动点,过点F作FG的垂线FH,交y轴的负半轴于点H,那么当点G的位置不断变化时,S△AFH﹣S△FBG的值是否发生变化?若变化,请说明理由,若不变化,请求出相应结果.

(1)求A、B两点的坐标;
(2)如图1,点C为x轴负半轴一动点,OC<OB,BD⊥AC于D交y轴于点E,求证:DO平分∠CDB;
(3)如图2,点F为AB中点,点G为x轴正半轴点B右侧一动点,过点F作FG的垂线FH,交y轴的负半轴于点H,那么当点G的位置不断变化时,S△AFH﹣S△FBG的值是否发生变化?若变化,请说明理由,若不变化,请求出相应结果.
