- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
- 数列通项公式求解
- + 数列求和
- 递归数列及性质
- 周期数列
如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.
设
是第n次挖去的小三角形面积之和(如
是第1次挖去的中间小三角形面积,
是第2次挖去的三个小三角形面积之和),则前n次挖去的所有小三角形面积之和的值为____________________.
设




将一个1×2014的方格表从左到右的2014个小方格依次标上1,2,…,2014.现用三种颜色g、r、y将各小方格分别染色,使得偶数格可以染g、r、y中任意一种颜色,奇数格只可以染g、y中的一种颜色,且有邻边的小方格不同色则此方格表的染色方法有种_______.