- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理概念辨析
- 数与式中的归纳推理
- + 图与形中的归纳推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
仔细观察下面○和●的排列规律:○●○○●○○○●○○○○●○○○○○●○○○○○○●…,若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________.
(1)如图(a),(b),(c),(d)为四个平面图形,数一数每个平面图形含有多少个顶点、多少条边,它们将平面分成多少个区域?

(2)由(1)推断一个平面图形的顶点数
、边数
和分平面所得区域的个数
之间有什么关系?
(3)现已知某个平面图形有999个顶点,且将平面分成了999个区域,试根据上述关系确定这个平面图形有多少条边?

(2)由(1)推断一个平面图形的顶点数



(3)现已知某个平面图形有999个顶点,且将平面分成了999个区域,试根据上述关系确定这个平面图形有多少条边?
现将“
”和“
”按照如下规律从左到右进行排列:

若每一个“
”或“
”占1个位置,即上述图形中,第1位是“
”,第4位是“
”,第7位是“
”,则在第2017位之前(不含第2017位),“
”的个数为__________.



若每一个“






将石子摆成如图所示的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 014项与5的差,即a2 014-5=( )


A.2 020×2 014 | B.2 020×2 013 |
C.1 010×2 014 | D.1 010×2 013 |
古希腊毕达哥拉斯学派的数学家在沙滩上用小石子排成多边形,从而研究“多边形数”.如图甲的三角形数1,3,6,10,15,…,第
个三角形数为
.又如图乙的四边形数1,4,9,16,25,…,第
个四边形数为
.以此类推,图丙的五边形数中,第
个五边形数为________________.










把正整数按一定的规则排成了如下图所示的三角形数表.设aij(i,j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如a42=8.若aij=2009,则i与j的和为_________. 

把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如下图),试求第八个三角形数是_______________________