- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 归纳推理概念辨析
- 数与式中的归纳推理
- + 图与形中的归纳推理
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(
)是在
年发现这一规律的.我国南宋数学家杨辉
年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图,在“杨辉三角”中,去除所有为
的项.依次构成数列
,则此数列前
项和为( )








A.![]() | B.![]() | C.![]() | D.![]() |
我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,已知第
行的所有数字之和为
,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,……,则此数列的前56项和为( )




A.2060 | B.2038 | C.4084 | D.4108 |
如图甲是第七届国际数学教育大会(简称
)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中
,如果把图乙中的直角三角形继续作下去,记
的长度构成数列
,则此数列的通项公式为
_____.






古希腊毕达哥拉斯学派研究了“多边形数”,人们把多边形数推广到空间,研究了“四面体数”,下图是第一至第四个四面体数,(已知
)

观察上图,由此得出第5个四面体数为______(用数字作答);第
个四面体数为______.


观察上图,由此得出第5个四面体数为______(用数字作答);第

杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623——1662)是在1654年发现这一规律的,比杨辉要迟
年,比贾宪迟
年。如图的表在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了,这又是我国数学史上的一个伟大成就。如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:
,则此数列前
项和为________.





将棱长相等的正方体按图示的形状摆放,从上往下依次为第1层,第2层,…… ,则第20层正方体的个数是( )


A.420 | B.440 | C.210 | D.220 |
两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作
,第2个五角形数记作
,第3个五角形数记作
,第4个五角形数记作
,…,第
个五角形数记作
,已知
,则前
个五角形数中,实心点的总数为__________.[参考公式:
]










两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作
,第2个五角形数记作
,第3个五角形数记作
,第4个五角形数记作
,…,若按此规律继续下去,得数列
,则
;对
,
.








