如图☆的曲线,其生成方法是(I)将正三角形(图(1))的每边三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边,得到图(2);(II)将图(2)的每边三等分,重复上述的作图方法,得到图(3);(III)再按上述方法继续做下去,所得到的曲线称为雪花曲线(Koch Snowflake),
(1)(2)(3).
设图(1)的等边三角形的边长为1,并且分别将图(1)、(2)、(3)…中的图形依次记作M1M2M3、…
(1)设中的边数为中每条边的长度为,写出数列的递推公式与通项公式;
(2)设的周长为所围成的面积为,求数列{}与{}的通项公式;请问周长与面积的极限是否存在?若存在,求出该极限,若不存在,简单说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
将正分割成个全等的小正三角形(图1,图2分别给出了的情形),在每个三角形的顶点各放置一个数,使位于的三边及平行于某边的任一直线上的数(当数的个数不少于3时)都分别依次成等差数列,若顶点处的三个数互不相同且和为1,记所有顶点上的数的和为,已知,则(用含的式子表达)__________
当前题号:2 | 题型:填空题 | 难度:0.99
分形几何学是数学家伯努瓦曼德尔布罗在20世纪70年代创立的一门新的数学学科.它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图1所示的分形规律可得如图2所示的一个树形图:

易知第三行有白圈5个,黑圈4个.我们采用“坐标”来表示各行中的白圈、黑圈的个数.比如第一行记为,第二行记为,第三行记为.照此规律,第行中的白圈、黑圈的“坐标”为,则________.
当前题号:3 | 题型:填空题 | 难度:0.99
黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:

则第个图案中有白色地面砖 块.
当前题号:4 | 题型:填空题 | 难度:0.99
黑、白两种颜色的正六边形地面砖按下图所示的规律拼成若干个图案,则第个图案中白色地面砖的块数为(   )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
如图,记棱长为1的正方体,以各个面的中心为顶点的正八面体为,以各面的中心为顶点的正方体为,以各个面的中心为顶点的正八面体为,……,以此类推得一系列的多面体,设的棱长为,则数列的各项和为________.
当前题号:6 | 题型:填空题 | 难度:0.99
“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第行的数字之和为______;去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,则此数列的前46项和为______.
当前题号:7 | 题型:填空题 | 难度:0.99
已知为线段(所在的直线)外一个定点,记
(1)若是线段的三等分点,试用表示
(2)若线段上有若干个等分点,能得到什么结论?请证明你的结论.(注:根据结论的一般性程度予以不同得分)
当前题号:8 | 题型:解答题 | 难度:0.99
中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期战国初年,算筹记数的方法是:个位、百位、万位的数按纵式的数码摆出;十位、千位、十万位的数按横式的数码摆出.如7738可用算筹表示为

1-9这9个数字的纵式与横式的表示数码如上图所示,则的运算结果可用算筹表示为(  )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99