- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从推理形式上看,由特殊到特殊的推理,由部分到整体,个别到一般的推理,由一般到特殊的推理依次是()
A.归纳推理、演绎推理、类比推理 | B.类比推理、归纳推理、演绎推理 |
C.归纳推理、类比推理、演绎推理 | D.演绎推理、归纳推理、类比推理 |
设直角三角形的两直角边的长分别为
,斜边长为
,斜边上的高为
,则有
成立,某同学通过类比得到如下四个结论:
①
;②
;③
;④
.
其中正确结论的序号是_____;进一步得到的一般结论是___________________.




①




其中正确结论的序号是_____;进一步得到的一般结论是___________________.
.设直角三角形的两直角边的长分别为
,斜边长为
,斜边上的高为
,则有
成立,某同学通过类比得到如下四个结论:
①
;②
;③
;④
.
其中正确结论的序号是 ;进一步得到的一般结论是 .




①




其中正确结论的序号是 ;进一步得到的一般结论是 .
以下说法,正确的个数为:()
①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.
②农谚“瑞雪兆丰年”是通过归纳推理得到的.
③由平面几何中圆的一些性质,推测出球的某些性质这是运用的类比推理.
④个位是5的整数是5的倍数,2375的个位是5,因此2375是5的倍数,这是运用的演绎推理.
①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理.
②农谚“瑞雪兆丰年”是通过归纳推理得到的.
③由平面几何中圆的一些性质,推测出球的某些性质这是运用的类比推理.
④个位是5的整数是5的倍数,2375的个位是5,因此2375是5的倍数,这是运用的演绎推理.
A.0 | B.2 | C.3 | D.4 |
已知整数的数对表如下:
(1,1)
(1,2),(2,1)
(1,3),(2,2),(3,1)
(1,4),(2,3),(3,2),(4,1)
(1,5),(2,4),(3,3),(4,2),(5,1)
… …
则这个数对表中,第20行从左到右的第10个数对是 .
(1,1)
(1,2),(2,1)
(1,3),(2,2),(3,1)
(1,4),(2,3),(3,2),(4,1)
(1,5),(2,4),(3,3),(4,2),(5,1)
… …
则这个数对表中,第20行从左到右的第10个数对是 .