- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有
,
,
.据此,可得正项等比数列
中,
( )





A.![]() | B.![]() | C.![]() | D.![]() |
在讨论勾股定理的过程中,《九章算术》提供了许多整勾股数,如
,等等.其中最大的数称为“弦数”,后人在此基础上进一步研究,得到如下规律:若勾股数组中的某一个数
是确定的奇数(大于1),把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数,若勾股数组中的某一个数
是大于2的偶数,把它除以2后再平方,然后把这个平方数分别减1,加1所得到的两个整数和这个偶数构成一组勾股数.由此得到的这种勾股数称之为“由
生成的一组勾股数”.若“由17生成的这组勾股数”的“弦数”为
,“由20生成的这组勾股数”的“弦数”为
,则
____________.







在讨论勾股定理的过程中,《九章算术》提供了许多整勾股数,如
,等等.其中最大的数称为“弦数”,后人在此基础上进一步研究,得到如下规律:若勾股数组中的某一个数
是确定的奇数(大于1),把它平方后拆成相邻的两个整数,那么奇数与这两个整数构成一组勾股数,称之为“由
生成的一组勾股数”.则“由17生成的这组勾股数”的“弦数”为_______________.



已知三角形的三边分别为
,内切圆的半径为
,则三角形的面积为
;四面体的四个面的面积分别为
,内切球的半径为
.类比三角形的面积可得四面体的体积为__________.





对于问题“已知关于
的不等式
的解集为
,解关于
的不等式
的”,给出一种解法:由
的解集为
,得
的解集为
.即关于
的不等式
的解集为
.类比上述解法,若关于
的不等式
的解集为
,则关于
的不等式
的解集为_____.

















命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )

A.![]() | B.![]() | C.![]() | D.![]() |