- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- + 合情推理与演绎推理
- 归纳推理
- 类比推理
- 演绎推理
- 直接证明与间接证明
- 数学归纳法
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
重庆一中开展的“第十届校园田径运动会”中,甲、乙、丙、丁四位同学每人参加了一个项目,且参加的项目各不相同,这个四个项目分别是:跳高、跳远、铅球、跑步.下面是关于他们各自参加的活动的一些判断:
①甲不参加跳高,也不参加跳远;②乙不参加跳远,也不参加铅球;
③丙不参加跳高,也不参加跳远;④如果甲不参加跑步,则丁也不参加跳远.
已知这些判断都是正确的,则乙参加了__________.
①甲不参加跳高,也不参加跳远;②乙不参加跳远,也不参加铅球;
③丙不参加跳高,也不参加跳远;④如果甲不参加跑步,则丁也不参加跳远.
已知这些判断都是正确的,则乙参加了__________.
数表的第1行只有两个数2、3,从第2行开始,先保序照搬上一行的数再在相邻两数之间插入这两个数的和,如下图所示,那么第20行的各个数之和等于__________.

在《九章算术》方田章圆田术(刘徽注)中指出:“割之弥细,所失弥之,割之又割,以至于不可割,则与圆周合体而无所失矣”注述中所用的割圆术是一种无限与有限转化思想.比如在
中“...”即代表无限次重复,但原数中有个定数
,这可以通过
确定出来
,类似地可得到:
__________.





如图1,在
中,
,
,
是垂足,则
,该结论称为射影定理.如图2,在三棱锥
中,
平面
,
平面
,
为垂足,且
在
内,类比射影定理,可以得到结论:__________.














由与圆心距离相等的两条弦长相等,想到与球心距离相等的两个截面圆的面积相等,用的是( )
A.三段论推理 | B.类比推理 | C.归纳推理 | D.传递性关系推理 |
已知正三角形
的边长是
,若
是
内任意一点,那么
到三角形三边的距离之和是定值
.这是平面几何中一个命题,其证明常采用“面积法”.如图,设
到三边的距离分别是
、
、
,则
,
为正三角形
的高
,即
.运用类比法猜想,对于空间正四面体,存在什么类似结论,并用“体积法”证明.
















