- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一汽车
店新进
三类轿车,每类轿车的数量如下表:
同一类轿车完全相同,现准备提取一部分车去参加车展.
(1)从店中一次随机提取2辆车,求提取的两辆车为同一类型车的概率;
(2)若一次性提取4辆车,其中
三种型号的车辆数分别记为
,记
为
的最大值,求
的分布列和数学期望.


类别 | ![]() | ![]() | ![]() |
数量 | 4 | 3 | 2 |
同一类轿车完全相同,现准备提取一部分车去参加车展.
(1)从店中一次随机提取2辆车,求提取的两辆车为同一类型车的概率;
(2)若一次性提取4辆车,其中





中国乒乓球队备战里约奥运会热身赛暨选拔赛于2016年7月14日在山东威海开赛.种子选手
与
,
,
三位非种子选手分别进行一场对抗赛,按以往多次比赛的统计,
获胜的概率分别为
,
,
,且各场比赛互不影响.
(1)若
至少获胜两场的概率大于
,则
入选征战里约奥运会的最终大名单,否则不予入选,问
是否会入选最终的大名单?
(2)求
获胜场数
的分布列和数学期望.








(1)若




(2)求


已知国家某5A级大型景区对拥挤等级与每日游客数量
(单位:百人)的关系有如下规定:当
时,拥挤等级为“优”;当
时,拥挤等级为“良”;当
时,拥挤等级为“拥挤”;当
时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据:

(Ⅰ)下面是根据统计数据得到的频率分布表,求出
的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.










(Ⅰ)下面是根据统计数据得到的频率分布表,求出

游客数量 (单位:百人) | ![]() | ![]() | ![]() | ![]() |
天数 | ![]() | ![]() | ![]() | ![]() |
频率 | ![]() | ![]() | ![]() | ![]() |
(Ⅱ)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.
某商场进行有奖促销活动,顾客购物每满500元,可选择返回50元现金或参加一次抽奖,抽奖规则如下:从1个装有6个白球、4个红球的箱子中任摸一球,摸到红球就可获得100元现金奖励,假设顾客抽奖的结果相互独立.
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?
(Ⅰ)若顾客选择参加一次抽奖,求他获得100元现金奖励的概率;
(Ⅱ)某顾客已购物1500元,作为商场经理,是希望顾客直接选择返回150元现金,还是选择参加3次抽奖?说明理由;
(Ⅲ)若顾客参加10次抽奖,则最有可能获得多少现金奖励?
甲、乙两人在罚球线投球命中的概率分别为
与
,投中得1分
,投不中得0分.
(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.



(1)甲、乙两人在罚球线各投球一次,求两人得分之和ξ的数学期望;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少一次命中的概率.
一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求:
(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数
的概率分布列和数学期望.
(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数

2008年中国北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮(含义:“北京欢迎你”)。现有8个相同的盒子,每个盒子中有一只福娃,每种福娃的数量如下表:
从中随机地选取5只。
(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率;
(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;……。设ξ表示所得的分数,求ξ的分布列和期望值。(结果保留一位小数)
福娃名称 | 贝贝 | 晶晶 | 欢欢 | 迎迎 | 妮妮 |
数 量 | 2 | 2 | 2 | 1 | 1 |
从中随机地选取5只。
(1)求选取的5只恰好组成完整“奥运会吉祥物”的概率;
(2)若完整地选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;……。设ξ表示所得的分数,求ξ的分布列和期望值。(结果保留一位小数)
从某校高三年级900名学生中随机抽取了50名测量身高,据测量被抽取的学生的身高全部介于
和
之间,将测量结果按如下方式分成八组:第一组
,第二组
第八组
,右图是按上述分组方法得到的条形图.

(1)根据已知条件填写下面表格:
(2)估计这所学校高三年级900名学生中,身高在
以上(含
)的人数;
(3)在样本中,若第二组有
人为男生,其余为女生,第七组有
人为女生,其余为男生,在第二组和第七组中各选一名同学组成实验小组,用
表示实验小组中男同学的人数,求
的分布列及期望
.






(1)根据已知条件填写下面表格:
组 别 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
样本数 | | | | | | | | |
(2)估计这所学校高三年级900名学生中,身高在


(3)在样本中,若第二组有





(本小题满分13分)
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为
,求
的分布列和数学期望.
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为


如图,已知面积为1的正三角形
三边的中点分别为
,从
,六个点中任取三个不同的点,所构成的三角形的面积为
(三点共线时,规定
).

(1)求
;
(2)求
.






(1)求

(2)求
