- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一个口袋中装有大小相同的2个白球和3个黑球。
(I)若采取放回抽样方式,每次摸出一球,从中摸出两球,求两球恰好颜色不同的概率;
(II)若采取放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与均值。
(I)若采取放回抽样方式,每次摸出一球,从中摸出两球,求两球恰好颜色不同的概率;
(II)若采取放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与均值。
甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是
,甲、乙、丙三人都能通过测试的概率是
,甲、乙、丙三人都不能通过测试的概率是
,且乙通过测试的概率比丙大.
(1)求乙、丙两人各自通过测试的概率分别是多少;
(2)求测试结束后通过的人数
的数学期望
.



(1)求乙、丙两人各自通过测试的概率分别是多少;
(2)求测试结束后通过的人数


一袋子中有大小相同的2个红球和3个黑球,从袋子里随机取球,取到每个球的可能性是相同的,设取到一个红球得2分,取到一个黑球得1分.
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及数学期望.
(Ⅰ)若从袋子里一次随机取出3个球,求得4分的概率;
(Ⅱ)若从袋子里每次摸出一个球,看清颜色后放回,连续摸3次,求得分ξ的概率分布列及数学期望.
将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为
的纸箱放入的小球编号为
,定义吻合度误差为
,假设
等可能地为1、2、3的各种排列,求.
(1)某人一轮“放球”满足
时的概率;
(2)求
的数学期望.




(1)某人一轮“放球”满足

(2)求

为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员
名,其中种子选手
名;乙协会的运动员
名,其中种子选手
名.从这
名运动员中随机选择
人参加比赛.
(1)设
为事件“选出的
人中恰有
名种子选手,且这
名种子选手来自同一个协会”求事件
发生的概率;
(2)设
为选出的
人中种子选手的人数,求随机变量
的分布列和数学期望.






(1)设





(2)设



端午节吃粽子是我国的传统习俗,设一盘中装有
个粽子,其中豆沙粽
个,肉粽
个,白粽
个,这三种粽子的外观完全相同,从中任意选取
个.
(
)求三种粽子各取到
个的概率.
(
)设
表示取到的豆沙粽个数,求
的分布列与数学期望.





(


(



某省高考改革新方案,不分文理科,高考成绩实行“
”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体
,从学生群体
中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记
表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量
的分布列和数学期望;
(III)将频率视为概率,现从学生群体
中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作
,求事件“
”的概率.




(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;
(II)从所调查的50名学生中任选2名,记


(III)将频率视为概率,现从学生群体



某校高二年级学生会有理科生4名,其中3名男同学;文科生3名,其中有1名男同学.从这7名成员中随机抽4人参加高中示范校验收活动问卷调查.
(Ⅰ)设
为事件“选出的4人中既有文科生又有理科生”,求事件
的概率;
(Ⅱ)设
为选出的4人中男生人数与女生人数差的绝对值,求随机变量
的分布列和数学期望.
(Ⅰ)设


(Ⅱ)设


设某校新、老校区之间开车单程所需时间为
,
只与道路畅通状况有关,对其容量为
的样本进行统计,结果如图:
(1)求
的分布列与数学期望
;
(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.



![]() | 25 | 30 | 35 | 40 |
频数(次) | 20 | 30 | 40 | 10 |
(1)求


(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.
某市卫生防疫部门为了控制某种病毒的传染,提供了批号分别为
的五批疫苗,供全市所辖的
三个区市民注射,每个区均能从中任选其中一个批号的疫苗接种.
(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;
(2)记
三个区选择的疫苗批号的中位数为
,求
的分布列及期望.


(1)求三个区注射的疫苗批号中恰好有两个区相同的概率;
(2)记


