甲、乙、丙三名乒乓球手进行单打对抗比赛,每两人比赛一场,共赛三场,每场比赛胜者得3分,负者得0分,在每一场比赛中,甲胜乙的概率为,丙胜甲的概率为,乙胜丙的概率为,且各场比赛结果互不影响.若甲获第一名且乙获第三名的概率为.
(1)求的值;
(2)设在该次对抗比赛中,丙得分为,求的分布列、数学期望和方差.
当前题号:1 | 题型:解答题 | 难度:0.99
某运动员射击一次所得环数的分布列如下:

8
9
10

0.4
0.4
0.2
 
现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为
(1)求该运动员两次命中的环数相同的概率;
(2)求的分布列和数学期望
当前题号:2 | 题型:解答题 | 难度:0.99
一商家诚邀甲、乙两名围棋高手进行一场网络国棋比赛,每比赛一局商家要向每名棋手支付2000元对局费,同时商家每局从转让网络转播权及广告宣传中获利12100元,从两名棋手以往比赛中得知,甲每局获胜的概率为,乙每局获胜的概率为,两名棋手约定:最多下五局,先连胜两局者获胜,比赛结束,比赛结束后,商家为获胜者颁发5000元的奖金,若没有决出获胜者则各颁发2500元.
(1)求下完五局且甲获胜的概率是多少;
(2)求商家从这场网络棋赛中获得的收益的数学期望是多少.
当前题号:3 | 题型:解答题 | 难度:0.99
某工厂过去在生产过程中将污水直接排放到河流中对沿河环境造成了一定的污染,根据环保部门对该厂过去10年的监测数据,统计出了其每年污水排放量(单位:吨)的频率分布表:
污水排放量




频率
0.1
0.3
0.4
0.2
 
将污水排放量落入各组的频率作为概率,并假设每年该厂污水排放量相互独立.
(1)若不加以治理,根据上表中的数据,计算未来3年中至少有2年污水排放量不小于200吨的概率;
(2)根据环保部门的评估,该厂当年污水排放量时,对沿河环境及经济造成的损失为5万元;当年污水排放量时,对沿河环境及经济造成的损失为10万元;当年污水排放量时,对沿河环境及经济造成的损失为20万元;当年污水排放量时,对沿河环境及经济造成的损失为50万元.为了保护环境,减少损失,该厂现有两种应对方案:
方案1:若该厂不采取治污措施,则需全部赔偿对沿河环境及经济造成的损失;
方案2:若该厂采购治污设备对所有产生的污水净化达标后再排放,则不需赔偿,采购设备的费用为10万元,每年设备维护等费用为15万元,该设备使用10年需重新更换.在接下来的10年里,试比较上述2种方案哪种能为该厂节约资金,并说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
某大学棋艺协会定期举办“以棋会友”的竞赛活动,分别包括“中国象棋”、“围棋”、“五子棋”、“国际象棋”四种比赛,每位协会会员必须参加其中的两种棋类比赛,且各队员之间参加比赛相互独立;已知甲同学必选“中国象棋”,不选“国际象棋”,乙、丙两位同学从四种比赛中任选两种参与.
(1)求甲、乙同时参加围棋比赛的概率;
(2)记甲、乙、丙三人中选择“中国象棋”比赛的人数为,求的分布列及期望.
当前题号:5 | 题型:解答题 | 难度:0.99
某中学有位学生申请三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有人申请大学的概率;
(2)求被申请大学的个数的概率分布列与数学期望
当前题号:6 | 题型:解答题 | 难度:0.99
现有4个旅游团队,3条旅游线路.
(1)求恰有2条线路被选择的概率;
(2)设被选中旅游线路条数为X,求X的分布列和数学期望.
当前题号:7 | 题型:解答题 | 难度:0.99
为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.
(1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:
 
A市居民
B市居民
喜欢杨树
300
200
喜欢木棉树
250
250
 
是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;
(2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;
(3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.
附:

0.100
0.050
0.010
0.001

2.706
3.841
6.635
10.828
 
当前题号:8 | 题型:解答题 | 难度:0.99
某大型歌手选秀活动,过程分为初赛、复赛和决赛.经初赛进入复赛的40名选手被平均分成甲、乙两个班,由组委会聘请两位导师各负责一个班进行声乐培训.下图是根据这40名选手参加复赛时获得的100名大众评审的支持票数制成的茎叶图.赛制规定:参加复赛的40名选手中,获得的支持票数不低于85票的可进入决赛,其中票数不低于95票的选手在决赛时拥有“优先挑战权”.

(1)从进入决赛的选手中随机抽出2名,X表示其中拥有“优先挑战权”的人数,求X的分布列和数学期望;
(2)请填写下面的列联表,并判断能否在犯错误的概率不超过0.025的前提下认为进入决赛与选择的导师有关?
 
甲班
乙班
合计
进入决赛
 
 
 
未进入决赛
 
 
 
合计
 
 
 
 
下面的临界值表仅供参考:
P
0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(参考公式:,其中
当前题号:9 | 题型:解答题 | 难度:0.99