- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 求离散型随机变量的均值
- 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记
表示总收入,
表示应纳的税,试写出调整前后
关于
的函数表达式;
(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
①先从收入在
及
的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用
表示抽到作为宣讲员的收入在
元的人数,
表示抽到作为宣讲员的收入在
元的人数,随机变量
,求
的分布列与数学期望;
②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率(%) | 级数 | 全月应纳税所得额 | 税率(%) |
1 | 不超过1500元部分 | 3 | 1 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记




(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入(元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 30 | 40 | 10 | 8 | 7 | 5 |
①先从收入在








②小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?
随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)
收入
个税起征点
专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用
等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额
的分布列与期望.




级数 | 一级 | 二级 | 三级 | 四级 | ![]() |
每月应纳税所得额(含税) | 不超过3000元的部分 | 超过3000元至12000元的部分 | 超过12000元至25000元的部分 | 超过25000元至35000元的部分 | ![]() |
税率![]() | 3 | 10 | 20 | 25 | ![]() |
(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?
(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额

某烘焙店加工一个成本为60元的蛋糕,然后以每个120元的价格出售,如果当天卖不完,剩下的这种蛋糕作餐厨垃圾处理.
(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:
①若烘焙店一天加工16个这种蛋糕,
表示当天的利润(单位:元),求
的分布列与数学期望及方差;
②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.
(1)若烘焙店一天加工16个这种蛋糕,,求当天的利润



(2)烘焙店记录了100天这种蛋糕的日需求量(单位:个),整理得下表:
日需求量![]() | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①若烘焙店一天加工16个这种蛋糕,


②若烘焙店一天加工16个或17个这种蛋糕,仅从获得利润大的角度考虑,你认为应加工16个还是17个?请说明理由.
已知
两个不透明盒中各有形状、大小都相同的红球、白球若干个.
盒中有
个红球与
个白球,
盒中有
个红球与
个白球
,若从
盒中各取一个球,
表示所取的
个球中红球的个数,则当
取到最大值时,
的值为( )













A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙两家外卖公司,其“骑手”的日工资方案如下:甲公司规定底薪70元,每单抽成1元;乙公司规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元.
假设同一公司的“骑手”一日送餐单数相同,现从两家公司各随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求乙公司的“骑手”一日工资y(单位:元)与送餐单数n(n∈N﹡)的函数关系;
(Ⅱ)若将频率视为概率,回答以下问题:
(i)记乙公司的“骑手”日工资为X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日工资的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.
假设同一公司的“骑手”一日送餐单数相同,现从两家公司各随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:

(Ⅰ)求乙公司的“骑手”一日工资y(单位:元)与送餐单数n(n∈N﹡)的函数关系;
(Ⅱ)若将频率视为概率,回答以下问题:
(i)记乙公司的“骑手”日工资为X(单位:元),求X的分布列和数学期望;
(ⅱ)小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日工资的角度考虑,请你利用所学的统计学知识为他做出选择,并说明理由.
某蛋糕店制作并销售一款蛋糕,制作一个蛋糕成本3元,且以8元的价格出售,若当天卖不完,剩下的则无偿捐献给饲料加工厂。根据以往100天的资料统计,得到如下需求量表。该蛋糕店一天制作了这款蛋糕
个,以
(单位:个,
,
)表示当天的市场需求量,
(单位:元)表示当天出售这款蛋糕获得的利润.
(1)当
时,若
时获得的利润为
,
时获得的利润为
,试比较
和
的大小;
(2)当
时,根据上表,从利润
不少于570元的天数中,按需求量分层抽样抽取6天.
(i)求此时利润
关于市场需求量
的函数解析式,并求这6天中利润为650元的天数;
(ii)再从这6天中抽取3天做进一步分析,设这3天中利润为650元的天数为
,求随机变量
的分布列及数学期望.





需求量/个 | ![]() | ![]() | ![]() | ![]() | ![]() |
天数 | 15 | 25 | 30 | 20 | 10 |
(1)当







(2)当


(i)求此时利润


(ii)再从这6天中抽取3天做进一步分析,设这3天中利润为650元的天数为


近年来,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费
元.

(1)求
的分布列及数学期望;
(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设
分别为红车,黄车,蓝车的月消费,写出
与
的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?
(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
在(2)的活动条件下,每个品牌各应该投放多少辆?


(1)求

(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设



(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
时长 | (0,15] | (15,30] | (30,45] | (45,60] |
人数 | 16 | 45 | 34 | 5 |
在(2)的活动条件下,每个品牌各应该投放多少辆?
从集合
的所有非空子集中,等可能地取出
个.
(1)若
,求所取子集的元素既有奇数又有偶数的概率;
(2)若
,记所取子集的元素个数之差为
,求
的分布列及数学期望
.


(1)若

(2)若



