- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 求离散型随机变量的均值
- + 均值的性质
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
元旦游戏中有20道选择题,每道选择题给了4个选项(其中有且只有1个正确).游戏规定:每题只选1项,答对得2个积分,否则得0个积分.某人答完20道题,并且会做其中10道题,其它试题随机答题,则他所得积分X的期望值
( )

A.25 | B.24 | C.22 | D.20 |
据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪
元,每单抽成
元;乙公司规定底薪
元,每日前
单无抽成,超过
单的部分每单抽成
元.
(1)分别求甲、乙快递公司的快递员的日工资
(单位:元)与送货单数
的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为
(单位:元),求
的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪






(1)分别求甲、乙快递公司的快递员的日工资


(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为


②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
已知随机变量
的所有可能取值分别为1,2,3,4,5.若数学期望
,则
取值为
的概率至少为( )




A.0.1 | B.0.15 |
C.0.2 | D.0.25 |
当今信息时代,众多高中生也配上了手机.某校为研究经常使用手机是否对学习成绩有影响,随机抽取高三年级50名理科生的一次数学周练成绩,用茎叶图表示如下图:

(1)根据茎叶图中的数据完成下面的
列联表,并判断是否有95%的把握认为经常使用手机对学习成绩有影响?
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为
,
,
,若
,则此二人适合结为学习上互帮互助的“师徒”,记
为两人中解决此题的人数,若
,问两人是否适合结为“师徒”?
参考公式及数据:
,其中
.

(1)根据茎叶图中的数据完成下面的

| 及格(![]() | 不及格 | 合计 |
很少使用手机 | | | |
经常使用手机 | | | |
合计 | | | |
(2)从50人中,选取一名很少使用手机的同学记为甲和一名经常使用手机的同学记为乙,解一道数列题,甲、乙独立解决此题的概率分别为






参考公式及数据:


![]() | 0.10 | 0.05 | 0.025 |
![]() | 2.706 | 3.841 | 5.024 |
节日期间,某种鲜花进货价是每束2.5元,销售价每束5元;节日卖不出去的鲜花以每束1.6元价格处理.根据前五年销售情况预测,节日期间这种鲜花的需求量
服从如下表所示的分布:

A.754元 | B.720元 | C.706元 | D.690元 |
某工厂生产甲、乙两种产品,每种产品都是经过第一道和第二道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有
两个等级.对每种产品,两道工序的加工结果都为
级时,产品为一等品,其余均为二等品.
(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率
;

(2)已知一件产品的利润如表二所示,用
分别表示一件甲、乙产品的利润,在(1)的条件下,求
的分布列及
;

(3)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人
名,可用资金
万元.设
分别表示生产甲、乙产品的数量,在(2)的条件下,
为何值时,
最大?最大值是多少?(解答时须给出图示说明)


(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等品的概率


(2)已知一件产品的利润如表二所示,用




(3)已知生产一件产品需用的工人数和资金额如表三所示.该工厂有工人






某投资公司在2010年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:
项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利




项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利






(Ⅰ)针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由;
(Ⅱ)若市场预期不变,该投资公司按照你选择的项目长期投资(每一年的利润和本金继续用作投资),问大约在哪一年的年底总资产(利润+本金)可以翻一番?
(参考数据:

