如图,面积为的正方形中有一个不规则的图形,可按下面方法估计的面积:在正方形中随机投掷个点,若个点中有个点落入中,则的面积的估计值为,假设正方形的边长为2,的面积为1,并向正方形中随机投掷个点,以表示落入中的点的数目.

(I)求的均值
(II)求用以上方法估计的面积时,的面积的估计值与实际值之差在区间内的概率.
附表:
当前题号:1 | 题型:解答题 | 难度:0.99
体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为,发球次数为,若的数学期望,则的取值范围是(   )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
随机掷一枚质地均匀的骰子,记向上的点数为m,已知向量=(m,1),=(2-m,-4),设X,则X的数学期望 E(X)=________.
当前题号:3 | 题型:填空题 | 难度:0.99
已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为ξ,则E(ξ)=(  )
A.3B.C.D.4
当前题号:4 | 题型:单选题 | 难度:0.99
已知袋中有3个白球,2个红球,现从中随机取出3个球,其中每个白球计1分,每个红球计2分,记X为取出3个球的总分值,则E(X)=(  )
A.B.C.4D.
当前题号:5 | 题型:单选题 | 难度:0.99
已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第局得分()的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.
(1)求在一局游戏中得3分的概率;
(2)求游戏结束时局数的分布列和数学期望.
当前题号:6 | 题型:解答题 | 难度:0.99
为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()(指数越小,空气质量越好)统计表.根据表中数据回答下列问题:

(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;
(2)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为(含50)时,空气质量级别为一级,用从(1)中抽出的样本数据中随机抽取三天的数据,空气质量级别为一级的天数为,求的分布列及数学期望;
(3)求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?
当前题号:7 | 题型:解答题 | 难度:0.99
根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:

根据某气象站的资料,某调查小组抄录了该工程施工地某月前20天的降水量的数据,绘制得到降水量的折线图,如下图所示.

(1)根据降水量的折线图,分别求该工程施工延误天数的频率;
(2)以(1)中的频率作为概率,求工期延误天数的分布列及数学期望与方差.
当前题号:8 | 题型:解答题 | 难度:0.99
交强险是车主必须为机动车购买的险种,若普通座以下私家车投保交强险的基准保费为元,在下一年续保时,实行费率浮动机制,保费与车辆发生道路交通事故出险的情况想联系,最终保费基准保费与道路交通事故相联系的浮动比率),具体情况如下表:

为了解某一品牌普通座以下私家车的投保情况,随机抽取了辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计如下表:
类型






数量






 
若以这辆该品牌的投保类型的频率代替一辆车投保类型的概率,则随机抽取一辆该品牌车在第四年续保时的费用的期望为(  )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
下表是随机变量的分布列,其中成等比数列,,且互不相等.则__________.

-1
0
2




 
当前题号:10 | 题型:填空题 | 难度:0.99