- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
“某大型水果超市每天以10元/千克的价格从水果基地购进若干A水果,然后以15元/千克的价格出管,若有剩余,则将剩余的水果以8元/千克的价格退回水果基地,为了确定进货数量,该超市记录了A水果最近50天的日需求量(单位:千克),整理得下表:
以50天记录的各日需求量的频率代替各日需求量的概率.
(1)若该超市一天购进
水果150千克,记超市当天
水果获得的利润为
(单位:元),求
的分布列及其数学期望;
(2)若该超市计划一天购进
水果150千克或160千克,请以当天
水果获得的利润的期望值为决策依据,在150千克与160千克之中选其一,应选哪一个?若受市场影响,剩余的水果以7元/千克的价格退回水果基地,又该选哪一个?
日需求量 | 140 | 150 | 160 | 170 | 180 | 190 | 200 |
频数 | 5 | 10 | 8 | 8 | 7 | 7 | 5 |
以50天记录的各日需求量的频率代替各日需求量的概率.
(1)若该超市一天购进




(2)若该超市计划一天购进


某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用
表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数
为
上的偶函数”为事件
,求事件
的概率;
(2)求
的分布列和数学期望.

(1)记“函数




(2)求

小张同学拿到一个随机变量
的概率分布列如下表,然后要计算
的数学期望.尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能判定这两个“?”处的数值相同.据此,小张给出了正确答案
__________.



![]() | 2 | 4 | 6 |
![]() | ? | ! | ? |
由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为
)
(Ⅰ)写出
的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记
组步数数据的平均数与方差分别为
,
,
组步数数据的平均数与方差分别为
,
,试分别比较
与以
,
与
的大小;(只需写出结论)
(Ⅲ)从上述
两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为
,求
的分布列和数学期望.
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为

组别 | 步数分组 | 频数 |
![]() | ![]() | 2 |
![]() | ![]() | 10 |
![]() | ![]() | ![]() |
![]() | ![]() | 2 |
![]() | ![]() | ![]() |
(Ⅰ)写出

(Ⅱ)记










(Ⅲ)从上述



某公司为庆祝成立二十周年,特举办《快乐大闯关》竞技类有奖活动,该活动共有四关,由两名男职员与两名女职员组成四人小组,设男职员闯过一至四关概率依次是
,女职员闯过一至四关的概率依次是
(1)求女职员闯过四关的概率;
(2)设
表示四人小组闯过四关的人数,求随机变量
的分布列和数学期望.


(1)求女职员闯过四关的概率;
(2)设


有10道数学单项选择题,每题选对得4分,不选或选错得0分.已知某考生能正确答对其中的7道题,余下的3道题每题能正确答对的概率为
.假设每题答对与否相互独立,记
为该考生答对的题数,
为该考生的得分,则
__________ ,
__________ (用数字作答).





大型水果超市每天以
元/千克的价格从水果基地购进若干
水果,然后以
元/千克的价格出售,若有剩余,则将剩余的水果以
元/千克的价格退回水果基地,为了确定进货数量,该超市记录了
水果最近
天的日需求量(单位:千克),整理得下表:
以
天记录的各日需求量的频率代替各日需求量的概率.
(1)求该超市
水果日需求量
(单位:千克)的分布列;
(2)若该超市一天购进
水果
千克,记超市当天
水果获得的利润为
(单位:元),求
的分布列及其数学期望.






日需求量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
以

(1)求该超市


(2)若该超市一天购进





学校举办的集体活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得
分、
分、
分的奖励,游戏还规定,当选手闯过一关后,可以选择得到相应的分数,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部分数都归零,游戏结束.设选手甲第一关、第二关、第三关的概率分别为
,
,
,选手选择继续闯关的概率均为
,且各关之间闯关成功互不影响.
(1)求选手甲第一关闯关成功且所得分数为零的概率;
(2)设该学生所得总分数为
,求
的分布列与数学期望.







(1)求选手甲第一关闯关成功且所得分数为零的概率;
(2)设该学生所得总分数为

