- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量的均值
- 求离散型随机变量的均值
- 均值的性质
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.
(1)求该乐队至少演唱1首原创新曲的概率;
(2)假定演唱一首原创新曲观众与乐队的互动指数为
(
为常数),演唱一首经典歌曲观众与乐队的互动指数为
,求观众与乐队的互动指数之和
的概率分布及数学期望.
(1)求该乐队至少演唱1首原创新曲的概率;
(2)假定演唱一首原创新曲观众与乐队的互动指数为




某中学每年暑假举行“学科思维讲座”活动,每场讲座结束时,所有听讲这都要填写一份问卷调查.2017年暑假某一天五场讲座收到的问卷份数情况如下表:
用分层抽样的方法从这一天的所有问卷中抽取
份进行统计,结果如下表:
(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出
人进行家访,求这
人中选择的是理综讲座的人数的分布列.
学科 | 语文 | 数学 | 英语 | 理综 | 文综 |
问卷份数 | ![]() | ![]() | ![]() | ![]() | ![]() |
用分层抽样的方法从这一天的所有问卷中抽取

| 满意 | 一般 | 不满意 |
语文 | ![]() | ![]() | ![]() |
数学 | ![]() | 1![]() | ![]() |
英语 | ![]() | ![]() | ![]() |
理综 | ![]() | ![]() | ![]() |
文综 | ![]() | ![]() | ![]() |
(1)估计这次讲座活动的总体满意率;
(2)求听数学讲座的甲某的调查问卷被选中的概率;
(3)若想从调查问卷被选中且填写不满意的人中再随机选出


为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.
(Ⅰ)设
为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件
发生的概率.
(Ⅱ)设
为选出的4人中高级导游的人数,求随机变量
的分布列和数学期望.
(Ⅰ)设


(Ⅱ)设


某校高一200名学生的期中考试语文成绩服从正态分布
,数学成绩的频数分布直方图如下:

(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有
人,求
的分布列和数学期望.
(附参考公式)若
,则
,


(1)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(2)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(3)如果语文和数学两科都优秀的共有4人,从(2)中的这些同学中随机抽取3人,设三人中两科都优秀的有


(附参考公式)若



为评估设备
生产某种零件的性能,从设备
生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
经计算,样本的平均值
,标准差
,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为
,并根据以下不等式进行评判(
表示相应事件的频率):①
.②
.③
.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.
(2)将直径小于等于
或直径大于
的零件认为是次品
①从设备
的生产流水线上随意抽取2件零件,计算其中次品个数
的数学期望
;
②从样本中随意抽取2件零件,计算其中次品个数
的数学期望
.


直径/mm | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值


(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为





(2)将直径小于等于


①从设备



②从样本中随意抽取2件零件,计算其中次品个数







(Ⅰ)在这18个数据中随机抽取3个数据,求其中恰有2个数据为空气质量达到一级的概率;
(Ⅱ)在这18个数据中随机抽取3个数据,用


(Ⅲ)以这18天的
