- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
第
届夏季奥林匹克运动会2016年8月5日到2016年8月21日在巴西里约热内卢举行,为了解我校学生“收看奥运会足球赛”是否与性別有关,从全校学生中随机抽取
名进行了问卷调查,得到
列联表,从这
名同学中随机抽取
人,抽到“收看奥运会足球赛 ”的学生的概率是
.
(1)请将上面的
列联表补充完整,并据此资料分析“收看奥运会足球赛”与性別是否有关;
(2)若从这
名同学中的男同学中随机抽取
人参加有奖竞猜活动,记抽到“收看奥运会足球赛”的学生人数为
,求
的分布列和数学期望.
参考公式:
,其中






| 男生 | 女生 | 合计 |
收看 | ![]() | | |
不收看 | | ![]() | |
合计 | | | ![]() |

(2)若从这




参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
“健步走”是一种方便而又有效的锻炼方式,李老师每天坚持“健步走”,并用计步器进行统计.他最近8天“健步走”步数的条形统计图及相应的消耗能量数据表如下:


(1)求李老师这8天“健步走”步数的平均数;
(2)从步数为16千步,17千步,18千步的6天中任选2天,设李老师这2天通过“健步走”消耗的能量和为
,求
的分布列及数学期望.


(1)求李老师这8天“健步走”步数的平均数;
(2)从步数为16千步,17千步,18千步的6天中任选2天,设李老师这2天通过“健步走”消耗的能量和为


重庆八中大学城校区与本部校区之间的驾车单程所需时间为
,
只与道路畅通状况有关,对其容量为500的样本进行统计,结果如下:
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求
的分布列与
;
(2)某天有3位教师独自驾车从大学城校区返回本部校区,记
表示这3位教师中驾车所用时间少于
的人数,求
的分布列与
;
(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.


![]() | 25 | 30 | 35 | 40 |
频数(次) | 100 | 150 | 200 | 50 |
以这500次驾车单程所需时间的频率代替某人1次驾车单程所需时间的概率.
(1)求


(2)某天有3位教师独自驾车从大学城校区返回本部校区,记




(3)下周某天张老师将驾车从大学城校区出发,前往本部校区做一个50分钟的讲座,结束后立即返回大学城校区,求张老师从离开大学城校区到返回大学城校区共用时间不超过120分钟的概率.
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的数学嘉年华活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得5个学豆、10个学豆、20个学豆的奖励,游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束。设选手甲第一关、第二关、第三关的概率分别为
,
,
,选手选择继续闯关的概率均为
,且各关之间闯关成功互不影响
(1)求选手获得5个学豆的概率;
(2)求选手甲第一关闯关成功且所得学豆为零的概率




(1)求选手获得5个学豆的概率;
(2)求选手甲第一关闯关成功且所得学豆为零的概率
根据某电子商务平台的调查统计显示,参与调查的
位上网购物者的年龄情况如右图.
(1)已知
、
、
三个年龄段的上网购物者人数成等差数列,求
的值;
(2)该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放
元的代金券,潜在消费人群每人发放
元的代金券.已经采用分层抽样的方式从参与调查的
位上网购物者中抽取了
人,现在要在这
人中随机抽取
人进行回访,求此三人获得代金券总和
的分布列与数学期望.

(1)已知




(2)该电子商务平台将年龄在









某中学根据2002—2014年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为
,已知三个社团他都能进入的概率为
,至少进入一个社团的概率为
,且
.
(1)求
与
的值;
(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修学分1分,对进入“棋类”
社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方
面获得校本选修学分分数的分布列及期望.




(1)求


(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修学分1分,对进入“棋类”
社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方
面获得校本选修学分分数的分布列及期望.
某水泥厂销售工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示:

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求未来3天内,连续2天日销售量不低于8吨,另一天日销售量低于8吨的概率;
(2)用
表示未来3天内日销售量不低于8吨的天数,求随机变量
的分布列及数学期望.

将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求未来3天内,连续2天日销售量不低于8吨,另一天日销售量低于8吨的概率;
(2)用


中国男子篮球职业联赛总决赛采用七场四胜制(即先胜四场者获胜),进入总决赛的甲乙两队中,若每一场比赛甲队获胜的概率为
,乙队获胜的概率为
,假设每场比赛的结果互相独立,现已赛完两场,乙队以2:0暂时领先.
(1)求甲队获得这次比赛胜利的概率;
(2)设比赛结束时两队比赛的场数为随机变量
,求随机变量
的分布列和数学期望
.


(1)求甲队获得这次比赛胜利的概率;
(2)设比赛结束时两队比赛的场数为随机变量



已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》,活动共有四关,设男生闯过一至四关的概率依次是
,女生闯过一至四关的概率依次是
.
(Ⅰ)求男生闯过四关的概率;
(Ⅱ)设
表示四人冲关小组闯过四关的人数,求随机变量
的分布列和期望.


(Ⅰ)求男生闯过四关的概率;
(Ⅱ)设


为普及高中生安全逃生知识与安全防护能力,某学校高一年级举办了高中生安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.

(Ⅰ)求出上表中的
的值;
(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一(2)班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一(2)班在决赛中进入前三位的人数为
,求
的分布列和数学期望.

(Ⅰ)求出上表中的

(Ⅱ)按规定,预赛成绩不低于90分的选手参加决赛,参加决赛的选手按照抽签方式决定出场顺序.已知高一(2)班有甲、乙两名同学取得决赛资格.
①求决赛出场的顺序中,甲不在第一位、乙不在最后一位的概率;
②记高一(2)班在决赛中进入前三位的人数为

