- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某网络营销部门为了统计某市网友2016年11月11日在某淘宝店的网购情况,随机抽查了该市当天60名网友的网购金额情况,得到如下数据统计表(如表):

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰为3:2.
(1)试确定
,
,
,
的值,并补全频率分布直方图(如图);
(2)该营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人总随机选取3人进行问卷调查,设
为选取的3人中“网购达人”的人数,求
的分布列和数学期望.

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰为3:2.
(1)试确定




(2)该营销部门为了进一步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人总随机选取3人进行问卷调查,设


某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为
.
(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为
,求
的分布列和数学期望.
下面的临界值表仅供参考:
(参考公式:
,其中
)
| 喜欢游泳 | 不喜欢游泳 | 合计 |
男生 | | 10 | |
女生 | 20 | | |
合计 | | | |

(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为


下面的临界值表仅供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |


设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回的抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,
表示三次中红球被摸中的次数,每个小球被抽取的几率相同,每次抽取相对立,则方差
()


A.2 | B.1 | C.![]() | D.![]() |
一对父子参加一个亲子摸奖游戏,其规则如下:父亲在装有红色、白色球各两个的甲袋子里随机取两个球,儿子在装有红色、白色、黑色球各一个的乙袋子里随机取一个球,父子俩取球互相独立,两人各摸球一次合在一起称为一次摸奖,他们取出的三个球的颜色情况与他们获得的积分对应如下表:
(1)求一次摸奖中,所取的三个球中恰有两个是红球的概率;
(2)设一次摸奖中,他们所获得的积分为
,求
的分布列及均值(数学期望)
;
(3)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.
所取球的情况 | 三个球均为红色 | 三个球均为不同色 | 恰有两球为红色 | 其他情况 |
所获得的积分 | 180 | 90 | 60 | 0 |
(2)设一次摸奖中,他们所获得的积分为



(3)按照以上规则重复摸奖三次,求至少有两次获得积分为60的概率.
某大学依次进行
科、
科考试,当
科合格时,才可考
科,且两科均有一次补考机会,两科都合格方通过.甲同学参加考试,已知他每次考
科合格的概率均为
,每次考
科合格的概率均为
.假设他不放弃每次考试机会,且每次考试互不影响.
(1)求甲恰好
次考试通过的概率;
(2)记甲参加考试的次数为
,求
的分布列和期望.








(1)求甲恰好

(2)记甲参加考试的次数为


某校高三年级有400人,在省普通高中学业水平考试中,用简单随机抽样的方法抽取容量为50的样本,得到数学成绩的频率分布直方图(下图)

(1)求第四个小矩形的高;
(2)估计该校高三年级在这次考试中数学成绩在120分以上的学生大约有多少人?
(3)样本中,已知成绩在
内的学生中有三名女生,现从成绩在
内的学生中选取3名学生进行学习经验推广交流,设有
名女生被选取,求
的分布列和数学期望.

(1)求第四个小矩形的高;
(2)估计该校高三年级在这次考试中数学成绩在120分以上的学生大约有多少人?
(3)样本中,已知成绩在




空气质量指数(
,简称
)是定量描述空气质量状况的指数,空气质量按照
大小分为六级:
为优;
为良;
为轻度污染;
为中度污染;
为重度污染;
为严重污染.一环保人士记录去年某地某月10天的
的茎叶图如下.

(1)利用该样本估计该地本月空气质量优良(
)的天数;(按这个月总共30天计算)
(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为
,求
的概率分布列和数学期望.











(1)利用该样本估计该地本月空气质量优良(

(2)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为


为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过
的有40人,不超过
的有15人.在45名女性驾驶员中,平均车速超过
的有20人,不超过
的有25人.
(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过
的人与性别有关.
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过
的车辆数为
,若每次抽取的结果是相互独立的,求
的分布列和数学期望.
参考公式与数据:
,其中




(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过

| 平均车速超过![]() | 平均车速不超过![]() | 合计 |
男性驾驶员人数 | | | |
女性驾驶员人数 | | | |
合计 | | | |



参考公式与数据:


![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
一个口袋中装有大小和质地都相同的白球和红球共7个,其中白球个数不少于红球个数,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为随机变量X,若
.
(1)求口袋中的白球个数;
(2)求
的概率分布与数学期望.

(1)求口袋中的白球个数;
(2)求

袋中有1个白球和4个黑球,每次从中任取1个球,每次取出黑球后不再放回去,直到取出白球为止.求取球次数
的分布列,并求出
的期望值和方差.

