- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 离散型随机变量及其分布列
- 二项分布及其应用
- + 离散型随机变量的均值与方差
- 离散型随机变量的均值
- 常用分布的均值
- 离散型随机变量的方差
- 常用分布的方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2016年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素
满足:
,且
时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量:
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.
编号 | 1 | 2 | 3 | 4 | 5 |
![]() | 169 | 178 | 166 | 175 | 180 |
![]() | 75 | 80 | 77 | 70 | 81 |
(1)求乙厂生产的产品数量:
(2)当产品中的微量元素



(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及数学期望.
某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场没销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量
(单位:台,
)的函数解析式
;
(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量(单位:台),整理得下表:

以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,
表示当周的利润(单位:元),求
的分布及数学期望.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量



(Ⅱ)该商场记录了去年夏天(共10周)空调器需求量(单位:台),整理得下表:

以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,


某单位实行休年假制度三年来,
名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:
⑴从该单位任选两名职工,用
表示这两人休年假次数之和,记“函数
,在区间
,
上有且只有一个零点”为事件
,求事件
发生的概率
;
⑵从该单位任选两名职工,用
表示这两人休年假次数之差的绝对值,求随机变量
的分布列及数学期望
.

休假次数 | ![]() | ![]() | ![]() | ![]() |
人数 | ![]() | ![]() | ![]() | ![]() |
根据上表信息解答以下问题:
⑴从该单位任选两名职工,用







⑵从该单位任选两名职工,用



众所周知,乒乓球是中国的国球,乒乓球队内部也有着很严格的竞争机制,为了参加国际大赛,种子选手甲与三位非种子选手乙、丙、丁分别进行一场内部对抗赛,按以往多次比赛的统计,甲获胜的概率分别为
,
,
,且各场比赛互不影响.
(1)若甲至少获胜两场的概率大于
,则甲入选参加国际大赛参赛名单,否则不予入选,问甲是否会入选最终的大名单?
(2)求甲获胜场次
的分布列和数学期望.



(1)若甲至少获胜两场的概率大于

(2)求甲获胜场次

育才高中为了推进新课程改革,满足不同层次学生的需求,决定在每周的周一、周三、周五的课外活动期间同时开设“茶艺”、“模拟驾驶”、“机器人制作”、“数学与生活”和“生物与环境”选修课,每位有兴趣的同学可以在任何一天参加任何一门科目.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各选修课各天的满座的概率如下表:
(1)求茶艺选修课在周一、周三、周五都不满座的概率;
(2)设周三各选修课中满座的科目数为
,求随机变量
的分布列和数学期望.
| 生物与环境 | 数学与生活 | 机器人制作 | 模拟驾驶 | 茶艺 |
周一 | ![]() | ![]() | ![]() | ![]() | ![]() |
周三 | ![]() | ![]() | ![]() | ![]() | ![]() |
周五 | ![]() | ![]() | ![]() | ![]() | ![]() |
(2)设周三各选修课中满座的科目数为


甲、乙两位数学老师组队参加某电视台闯关节目,共3关,甲作为嘉宾参与答题,若甲回答错误,乙作为亲友团在整个通关过程中至多只能为甲提供一次帮助机会,若乙回答正确,则甲继续闯关,若某一关通不过,则收获前面所有累积奖金.约定每关通过得到奖金2000元,设甲每关通过的概率为
,乙每关通过的概率为
,且各关是否通过及甲、乙回答正确与否均相互独立.
(1)求甲、乙获得2000元奖金的概率;
(2)设
表示甲、乙两人获得的奖金数,求随机变量
的分布列和数学期望
.


(1)求甲、乙获得2000元奖金的概率;
(2)设



为增强市民的节能环保意识,郑州市面向全市征召义务宣传志愿者,从符合条件的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示,其中年龄分组区是:
.

(Ⅰ)求图中
的值,并根据频率分布直方图估计这500名志愿者中年龄在
岁的人数;
(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为
,求
的分布列及数学期望.


(Ⅰ)求图中


(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为


某公司对新招聘的员工张某进行综合能力测试,共设置了
三个测试项目,假定张某通过项目
的概率为
,通过项目
的概率均为
,且这三个测试项目能否通过相互独立.
(1)用随机变量
表示张某在测试中通过的项目个数,求
的概率分布和数学期望
(用
表示);
(2)若张某通过一个项目的概率最大,求实数
的取值范围.





(1)用随机变量




(2)若张某通过一个项目的概率最大,求实数

现有
三所大学来我校进行自主招生面试,设每位学生只申请其中一所大学的面试,且申请其中任一所大学的面试是等可能的,求我校的任4位申请人中:
(1)恰有2人申请
校面试的概率;
(2)申请的面试所在学校的个数
的分布列与期望.

(1)恰有2人申请

(2)申请的面试所在学校的个数

交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为
,其范围为
,分别有5个级别:
畅通;
基本畅通;
轻度拥堵;
中度拥堵;
严重拥堵.早高峰时段(
),从贵阳市交通指挥中心随机选取了二环以内50个交通路段,依据交通指数数据绘制的直方图如图所示:

(1)据此直方图估算交通指数
时的中位数和平均数;
(2)据此直方图求出早高峰二环以内的3个路段至少有两个严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人所用时间的数学期望.









(1)据此直方图估算交通指数

(2)据此直方图求出早高峰二环以内的3个路段至少有两个严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人所用时间的数学期望.