- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- + 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在某校组织的一次篮球定点投篮训练中,规定每人最多投
次;在
处每投进一球得
分,在
处每投进一球得
分;如果前两次得分之和超过
分即停止投篮,否则投第三次.同学在
处的命中率
为
0,在
处的命中率为
,该同学选择先在
处投一球,以后都在
处投,用
表示该同学投篮训练结束后所得的总分,其分布列为
(1)求
的值;
(2)求随机变量
的数学期望
;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.














![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求

(2)求随机变量


(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
某校要通过选拔赛选取一名同学参加市级乒乓球单打比赛,选拔赛采取淘汰制,败者直接出局.现有两种赛制方案:三局两胜制和五局三胜制.问两选手对决时,选择何种赛制更有利于选拔出实力最强的选手,并说明理由.(设各局胜负相互独立,各选手水平互不相同.)
甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中胜的概率为
,且各局比赛结果相互独立,则在甲获得冠军的条件下,比赛进行了3局的概率为______.

某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试,若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定
(1)求当天小王的该银行卡被锁定的概率;
(2)设当天小王用该银行卡尝试密码的次数为X,求
.
(1)求当天小王的该银行卡被锁定的概率;
(2)设当天小王用该银行卡尝试密码的次数为X,求

从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为
,
,
.
(1)设
表示一辆车从甲地到乙地遇到红灯的个数,求
;
(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.



(1)设


(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.
某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作,若四个电子元件的使用寿命超过1000小时的概率都为
,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为_______.


有甲、乙、丙三支足球队互相进行比赛,每场都要分出胜负,已知甲队胜乙队的概率是0.4,甲队胜丙队的概率是0.3,乙队胜丙队的概率是0.5,现规定比赛顺序是:第一场甲队对乙队,第二场是第一场中的胜者对丙队,第三场是第二场中的胜者对第一场中的败者,以后每一场都是上一场中的胜者对前一场中的败者,若某队连胜四场则比赛结束,求:
(1)第四场结束比赛的概率;
(2)第五场结束比赛的概率.
(1)第四场结束比赛的概率;
(2)第五场结束比赛的概率.
电影公司随机收集了电影的有关数据,经分类整理得到下表:
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值假设所有电影是否获得好评相互独立.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率.
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | 140 | 50 | 300 | 200 | 800 | 510 |
好评率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 | 0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值假设所有电影是否获得好评相互独立.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率.
在一个选拔节目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为
,
,
,
,且各轮问题能否正确回答互不影响.
(1)求该选手进人第三轮才被淘汰的概率;
(2)求该选手至多进人第三轮考核的概率.




(1)求该选手进人第三轮才被淘汰的概率;
(2)求该选手至多进人第三轮考核的概率.
随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:
若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.
(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;
(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为
元,求
的分布列与数学期望.
考试情况 | 男学员 | 女学员 |
第1次考科目二人数 | 1200 | 800 |
第1次通过科目二人数 | 960 | 600 |
第1次未通过科目二人数 | 240 | 200 |
若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.
(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;
(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为

