- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- + 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲、乙、丙三学生独立地解答同一道数学问题,甲生解答正确的概率是0.9,乙、丙生解答正确的概率均是0.8,那么至多有一学生解答正确的概率是( )
A.0.068 | B.0.072 | C.0.932 | D.0.928 |
小李在游乐场玩掷沙包击落玩偶的游戏.假设他第一次掷沙包击中玩偶的概率为0.4,第二次掷沙包击中玩偶的概率为0.7,而玩偶被击中一次就落地的概率为0.5,被击中两次必然落地.若小李至多掷两次沙包,则他能将玩偶击落的概率为______.
某大学选拔新生补充进“篮球”,“电子竞技”,“国学”三个社团,据资料统计,新生通过考核选拔进入这三个社团成功与否相互独立,2019年某新生入学,假设他通过考核选拔进入该校的“篮球”,“电子竞技”,“国学”三个社团的概率依次为概率依次为m,
,n,已知三个社团他都能进入的概率为
,至少进入一个社团的概率为
,且m>n.则
( )




A.![]() | B.![]() | C.![]() | D.![]() |
某自助银行有
四台ATM,在某一时刻这四台ATM被占用的概率分别为
.
(1)若某客户只能使用四台ATM中的
或
,则该客户需要等待的概率为_________;
(2)某客户使用ATM取款时,恰好有两台ATM被占用的概率为_______.


(1)若某客户只能使用四台ATM中的


(2)某客户使用ATM取款时,恰好有两台ATM被占用的概率为_______.
甲、乙两个小组各10名学生的英语口语测试成绩如下(单位:分).
甲组:76,90,84,86,81,87,86,82,85,83
乙组:82,84,85,89,79,80,91,89,79,74
现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A;“抽出的学生的英语口语测试成绩不低于85分”记为事件B,则P(AB),P(A|B)的值分别是( )
甲组:76,90,84,86,81,87,86,82,85,83
乙组:82,84,85,89,79,80,91,89,79,74
现从这20名学生中随机抽取一人,将“抽出的学生为甲组学生”记为事件A;“抽出的学生的英语口语测试成绩不低于85分”记为事件B,则P(AB),P(A|B)的值分别是( )
A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
设甲、乙、丙三位老人是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.
(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?
(2)求这一小时内至少有一位老人需要照顾的概率.
(1)甲、乙、丙三位老人在这一小时内需要照顾的概率分别是多少?
(2)求这一小时内至少有一位老人需要照顾的概率.
在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )
A.![]() | B.![]() |
C.![]() | D.![]() |
甲、乙、丙三人每人有一张游泳比赛的门票,已知每张票可以观看指定的三场比赛中的任一场(三场比赛时间不冲突),甲乙二人约定他们会观看同一场比赛并且他俩观看每场比赛的可能性相同,又已知丙观看每一场比赛的可能性也相同,且甲乙的选择与丙的选择互不影响.
(1)求三人观看同一场比赛的概率;
(2)记观看第一场比赛的人数是
,求
的分布列和期望.
(1)求三人观看同一场比赛的概率;
(2)记观看第一场比赛的人数是

