- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- + 独立事件的实际应用
- 递推法求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
甲乙两人组队参加猜谜语大赛,比赛共两轮,每轮比赛甲乙两人各猜一个谜语,已知甲猜对每个谜语的概率为
,乙猜对每个谜语的概率为
,甲、乙在猜谜语这件事上互不影响,则比赛结束时,甲乙两人合起来共猜对三个谜语的概率为 __________


一项抛掷骰子的过关游戏规定:在第
关要抛掷一颗骰子
次,如里这
次抛掷所出现的点数和大于
,则算过关,可以随意挑战某一关.若直接挑战第三关,则通关的概率为______ ;若直接挑战第四关,则通关的慨率为______ .




一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为p、
、
,且每题答对与否相互独立.
(1)当
时,求考生填空题得满分的概率;
(2)若考生填空题得10分与得15分的概率相等,求的p值.


(1)当

(2)若考生填空题得10分与得15分的概率相等,求的p值.
改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月对甲、乙两种移动支付方式的使用情况,从全校学生中随机抽取了100人作为样本,发现样本中甲、乙两种支付方式都不使用的有10人,样本中仅使用甲种支付方式和仅使用乙种支付方式的学生的支付金额分布情况如下:
(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;
(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以
表示这2人中上个月支付金额大于500元的人数,用频率近似代替概率,求
的分布列和数学期望
支付金额(元) 支付方式 | ![]() | ![]() | 大于1000 |
仅使用甲 | 15人 | 8人 | 2人 |
仅使用乙 | 10人 | 9人 | 1人 |
(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;
(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以


某市某校在秋季运动会中,安排了篮球投篮比赛.现有20名同学参加篮球投篮比赛,已知每名同学投进的概率均为0.4,每名同学有2次投篮机会,且各同学投篮之间没有影响.现规定:投进两个得4分,投进一个得2分,一个未进得0分,则其中一名同学得2分的概率为( )
A.0.5 | B.0.48 | C.0.4 | D.0.32 |
2019年春节期间.当红彩视明星翟天临“不知“知网””学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文.将认定为“存在问题学位论文”。有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评.2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”。设毎篇学位论文被毎位专家评议为“不合格”的槪率均为
,且各篇学位论文是否被评议为“不合格”相互独立.
(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为
,求
;
(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.

(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为


(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.
首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为
,且三家企业的购买结果相互之间没有影响,则三家企业中恰有1家购买该机床设备的概率是

A.![]() | B.![]() | C.![]() | D.![]() |
国产杀毒软件进行比赛,每个软件进行四轮考核,每轮考核中能够准确对病毒进行查杀的进入下一轮考核,否则被淘汰.已知某个软件在四轮考核中能够准确杀毒的概率依次是
,
,
,
,且各轮考核能否通过互不影响.则该软件至多进入第三轮考核的概率为______.




设两个独立事件A和B都不发生的概率为
,A发生B不发生的概率和B发生A不发生的概率相同,则事件A发生的概率P(A)等于( )

A.![]() | B.![]() |
C.![]() | D.![]() |
某射手每次射击击中目标的概率是
,且各次射击的结果互不影响.
(Ⅰ)假设这名射手射击
次,求有
次连续击中目标,另外
次未击中目标的概率;
(Ⅱ)假设这名射手射击
次,记随机变量
为射手击中目标的次数,求
的分布列及数学期望.

(Ⅰ)假设这名射手射击



(Ⅱ)假设这名射手射击


