- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- + 事件的独立性
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 独立重复试验
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
抛掷一枚均匀骰子2次,在下列事件中,与事件“第一次得到6点”不相互独立的是( )
A.第二次得到6点 |
B.第二次的点数不超过3 |
C.第二次的点数是奇数 |
D.两次得到的点数和是12 |
已知事件A,B相互独立,P(A)=0.4,P(B)=0.3,给出下列四个式子:①P(AB)=0.12;②P(
B)=0.18;③P(A
)=0.28;④P(
)=0.42.其中正确的有( )




A.4个 | B.2个 |
C.3个 | D.1个 |
某保险公司针对电动自行车车主推出甲、乙两种保险,假设某地共有20000名车主,每名车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立。
(l) 用
表示该地的20000位车主中,甲、乙两种保险都不购买的车主数.求
的期望:
(2) 设有10000人购买了甲种保险,每一份的保费为60元,根据统计,一年内甲种保险的出险率(即每位投保人出险的概率)为1%,一旦出险,保险公司赔偿出险车主5000元(每年对每一名购买了甲种保险的车主最多赔偿一次,利用附表给出的数据,估算保险公司在该保险中的获得的利润的数学期望在1OOOOO元200000元之间的概率.
(利润=总保费收入一总赔偿支出)
附表:
(l) 用


(2) 设有10000人购买了甲种保险,每一份的保费为60元,根据统计,一年内甲种保险的出险率(即每位投保人出险的概率)为1%,一旦出险,保险公司赔偿出险车主5000元(每年对每一名购买了甲种保险的车主最多赔偿一次,利用附表给出的数据,估算保险公司在该保险中的获得的利润的数学期望在1OOOOO元200000元之间的概率.
(利润=总保费收入一总赔偿支出)
附表:

![]() | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
![]() | 0.130 | 0.220 | 0.333 | 0.542 | 0.585 | 0.670 | 0.702 |
某电视图夏日水上闯关节目中的前三关的过关率分别为0.8,0.6,0.5,只有通过前一关才能进入下一关,且通过每关相互独立,一选手参加该节目,则该选手只闯过前两关的概率为( )
A.0.48 | B.0.4 | C.0.32 | D.0.24 |
A、B两位同学各有3张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面向上时A赢得B一张卡片,否则B赢得A一张卡片,如果某人已赢得所有卡片,则游戏终止,那么恰好掷完5次硬币时游戏终止的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |