- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- + 事件的独立性
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 独立重复试验
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别为0.9,0.9,0.8,若至少有两枚导弹命中目标方可将其摧毁,则目标被摧毁的概率为()
A.0.998 | B.0.046 | C.0.002 | D.0.954 |
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,那么该生在上学路上到第3个路口首次遇到红灯的概率为__________.

某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验,设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(1)求恰有一件抽检的6件产品中二等品的概率;
(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.
(1)求恰有一件抽检的6件产品中二等品的概率;
(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率.
袋中有大小相同的3个红球和2个白球,现从袋中每次取出一个球,若取出的是红球,则放回袋中,继续取一个球,若取出的是白球,则不放回,再从袋中取一球,直到取出两个白球或者取球5次,则停止取球,设取球次数为
,
(1)求取球3次则停止取球的概率;
(2)求随机变量
的分布列.

(1)求取球3次则停止取球的概率;
(2)求随机变量

某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为
和
,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
甲、乙二射击运动员分别对一目标射击
次,甲射中的概率为
,乙射中的概率为
,求:
(1)
人都射中目标的概率; (2)
人中恰有
人射中目标的概率;
(3)
人至少有
人射中目标的概率; (4)
人至多有
人射中目标的概率?



(1)



(3)




箱子里有5个黑球,4个白球,每次随机取出一个球,若取出黑球,则放回箱中,重新取球;若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为
)拟参加挑选,且每人能通过体能、射击、爆破的概率分别为
.这三项测试能否通过相互之间没有影响.
(1)求
能够入选的概率;
(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).


(1)求

(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).