- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- + 事件的独立性
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 独立重复试验
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在奥运知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关奥运知识的问题,已知甲答对这道题的概率是
,甲、乙两人都回答错误的概率是
,乙、丙两人都回答正确的概率是
.设每人回答问题正确与否相互独立的.
(Ⅰ)求乙答对这道题的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答对这道题的概率.



(Ⅰ)求乙答对这道题的概率;
(Ⅱ)求甲、乙、丙三人中,至少有一人答对这道题的概率.
甲、乙两人各进行1次射击,如果两人击中目标的概率分别为0.8和0.4,则其中恰有1人击中目标的概率是( )
A.0.32 | B.0.56 |
C.0.44 | D.0.68 |
甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )
A.0.45 | B.0.6 | C.0.65 | D.0.75 |









A.![]() | B.![]() | C.![]() | D.![]() |
有
件产品,其中
件是次品,其余都是合格品,现不放回的从中依次抽
件.求:(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的条件下,第二次抽到次品的概率.



(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的条件下,第二次抽到次品的概率.
现有
两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.
队中每人答对的概率均为
,
队中3人答对的概率分别为
,且各答题人答题正确与否之间互无影响,若事件
表示“
队得2分”,事件
表示“
队得1分”,则
______.










某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.

(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
三个元件
正常工作的概率分别为
,且是相互独立的。如图,将
两个元件并联后再与
元件串联接入电路,则电路不发生故障的概率是( )






A.![]() | B.![]() | C.![]() | D.![]() |