- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条件概率
- + 事件的独立性
- 独立事件的判断
- 相互独立事件与互斥事件
- 独立事件的乘法公式
- 独立事件的实际应用
- 递推法求概率
- 独立重复试验
- 二项分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近几年来,我国许多地区经常出现雾霾天气,某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止组织集体活动,若无雾霾则组织集体活动,预报得知,这一地区在未来一周从周一到周五5天的课间操时间出现雾霾的概率是:前3天均为50%,后2天均为80%,且每一天出现雾霾与否是相互独立的.
(1)求未来一周5天至少一天停止组织集体活动的概率;
(2)求未来一周5天不需要停止组织集体活动的天数
的分布列;
(3)用
表示该校未来一周5天停止组织集体活动的天数,记“函数
在区间
上有
且只有一个零点”为事件
,求事件
发生的概率.
(1)求未来一周5天至少一天停止组织集体活动的概率;
(2)求未来一周5天不需要停止组织集体活动的天数

(3)用



且只有一个零点”为事件


一次测验共有4个选择题和2个填空题,每答对一个选择题得20分,每答对一个填空题得10分,答错或不答得0分,若某同学答对每个选择题的概率均为
,答对每个填空题的概率均为
,且每个题答对与否互不影响.
(1)求该同学得80分的概率;
(2)若该同学已经答对了3个选择题和1个填空题,记他这次测验的得分为
,求
的分布列和数学期望.


(1)求该同学得80分的概率;
(2)若该同学已经答对了3个选择题和1个填空题,记他这次测验的得分为


(题文)为弘扬民族古典文化,学校举行古诗词知识竞赛,某轮比赛由节目主持人随机从题库中抽取题目让选手抢答,回答正确给改选手记正10分,否则记负10分.根据以往统计,某参赛选手能答对每一个问题的概率为
;现记“该选手在回答完
个问题后的总得分为
”.
(1)求
且
的概率;
(2)记
,求
的分布列,并计算数学期望
.



(1)求


(2)记



甲,乙,丙三个同学同时报名参加某重点高校2012年自主招生.高考前自主招生的程序为审核材料和文化测试,只有审核过关后才能参加文化测试,文化测试合格者即可获得自主招生入选资格.因为甲,乙,丙三人各有优势,甲,乙,丙三人审核过关的概率分别为0.5,0.6,0.4,审核过关后,甲,乙,丙三人文化测试合格的概率分别为0.6,0.5,0.75.
(1)求甲,乙,丙三人中只有一人通过审核的概率;
(2)设甲,乙,丙三人中获得自主招生入选资格的人数为
,求随机变量
的期望.
(1)求甲,乙,丙三人中只有一人通过审核的概率;
(2)设甲,乙,丙三人中获得自主招生入选资格的人数为


市工商局于今年3月份,对市内流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的
饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶该饮料,并限定每人喝两瓶,求
(Ⅰ)甲喝两瓶
饮料,均合格的概率
(Ⅱ)甲、乙、丙每人喝两瓶,恰有一人喝到不合格饮料的概率(精确到0.01)

(Ⅰ)甲喝两瓶

(Ⅱ)甲、乙、丙每人喝两瓶,恰有一人喝到不合格饮料的概率(精确到0.01)
车站每天8:00~9∶00,9:00~10:00都恰有一辆客车到站,8:00~9:00到站的客车A可能在8:10,8:30,8:50到站,其概率依次为
;9:00~10:00到站的客车B可能在9:10,9:30,9:50到站,其概率依次为
.
(1)旅客甲8;00到站,设他的候车时间为
,求
的分布列和
;
(2)旅客乙8:20到站,设他的候车时间为
,求
的分布列和
.


(1)旅客甲8;00到站,设他的候车时间为



(2)旅客乙8:20到站,设他的候车时间为



甲、乙、丙三人分别独立的进行某项技能测试,已知甲能通过测试的概率是
,甲、乙、丙三人都能通过测试的概率是
,甲、乙、丙三人都不能通过测试的概率是
,且乙通过测试的概率比丙大.
(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;
(Ⅱ)求测试结束后通过的人数
的数学期望
.



(Ⅰ)求乙、丙两人各自通过测试的概率分别是多少;
(Ⅱ)求测试结束后通过的人数


某大学举办“我爱记歌词”校园歌手大赛,经过层层选拔,有5人进入决赛,决赛办法如下:选手参加“千首电脑选歌”演唱测试,测试过关者即被授予“校园歌手”称号,否则参加“百首电脑选歌”演唱测试.若“百首电脑选歌”测试过关也被授予“校园歌手”称号,否则被彻底淘汰.若进入决赛的5人“千首电脑选歌”演唱测试过关的概率是0.5,“百首电脑选歌”演唱测试合格的概率是0.8,而且每个人每轮测试是否合格是相互独立的,试计算(结果精确到0.01)
(1)恰好有两人参加“百首电脑选歌”演唱的概率;
(2)平均有几人参加“百首电脑选歌”演唱(保留小数);
(3)至少一人被最终淘汰的概率.
(1)恰好有两人参加“百首电脑选歌”演唱的概率;
(2)平均有几人参加“百首电脑选歌”演唱(保留小数);
(3)至少一人被最终淘汰的概率.