- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大学现有6名包含
在内的男志愿者和4名包含
在内的女志愿者,这10名志愿者要参加第十三届全运会支援服务工作,从这些人中随机抽取5人参加田赛服务工作,另外5人参加径赛服务工作.
(1)求参加田赛服务工作的志愿者中包含
但不包含
的概率;
(2)设
表示参加径赛服务工作的女志愿者人数,求随机变量
的分布列与数学期望.


(1)求参加田赛服务工作的志愿者中包含


(2)设


甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.
在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数X的分布列为________.
每人在一轮投篮练习中最多可投篮4次,现规定一旦命中即停止该轮练习,否则一直试投到4次为止.已知一选手的投篮命中率为0.7,求一轮练习中该选手的实际投篮次数ξ的分布列,并求出ξ的期望E(ξ)与方差D(ξ)(保留3位有效数字).
李先生家住
小区,他工作在
科技园区,从家开车到公司上班路上有
两条路线(如图),
路线上有
三个路口,各路口遇到红灯的概率均为
;
路线上有
两个路口,各路口遇到红灯的概率依次为
.
(Ⅰ)若走
路线,求最多遇到1次红灯的概率;
(Ⅱ)若走
路线,求遇到红灯次数
的数学期望;
(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.









(Ⅰ)若走

(Ⅱ)若走


(Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助李先生从上述两条路线中选择一条最好的上班路线,并说明理由.

某学生在参加政、史、地三门课程的学业水平考试中,取得A等级的概率分别为
、
、
,且三门课程的成绩是否取得A等级相互独立.记ξ为该生取得A等级的课程数,其分布列如下表所示,则数学期望E(ξ)的值为( )



ξ | 0 | 1 | 2 | 3 |
P | ![]() | a | b | ![]() |
A.![]() | B.![]() | C.![]() | D.1 |
甲箱子里装有
个白球和
个红球,乙箱子里装有
个白球和
个红球.从这两个箱子里分别摸出一个球,设摸出的白球的个数为
,摸出的红球的个数为
,则( )






A.![]() ![]() | B.![]() ![]() |
C.![]() ![]() | D.![]() ![]() |
第三届移动互联创新大赛,于2017年3月~10月期间举行,为了选出优秀选手,某高校先在计算机科学系选出一种子选手
,再从全校征集出3位志愿者分别与
进行一场技术对抗赛,根据以往经验,
与这三位志愿者进行比赛一场获胜的概率分别为
,且各场输赢互不影响.
(1)求甲恰好获胜两场的概率;
(2)求甲获胜场数的分布列与数学期望.




(1)求甲恰好获胜两场的概率;
(2)求甲获胜场数的分布列与数学期望.
某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.
(1)求该乐队至少演唱1首原创新曲的概率;
(2)假定演唱一首原创新曲观众与乐队的互动指数为
(
为常数),演唱一首经典歌曲观众与乐队的互动指数为
,求观众与乐队的互动指数之和
的概率分布及数学期望.
(1)求该乐队至少演唱1首原创新曲的概率;
(2)假定演唱一首原创新曲观众与乐队的互动指数为



