年微信用户数量统计显示,微信注册用户数量已经突破亿.微信用户平均年龄只有岁,的用户在岁以下,的用户在岁之间,为调查大学生这个微信用户群体中每人拥有微信的数量,现在从北京大学生中随机抽取位同学进行了抽样调查,结果如下:
微信群数量
频数
频率












个以上


合计


 
)求的值.
)若从位同学中随机抽取人,求这人中恰有人微信群个数超过个的概率.
)以这个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取人,记表示抽到的是微信群个数超过个的人数,求的分布列和数学期望
当前题号:1 | 题型:解答题 | 难度:0.99
剑门关华侨城2018首届新春灯会在剑门关高铁站广场举行.在高铁站广场上有一排成直线型的4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是,出现绿灯的概率是,现将这4盏灯依次记为.并令,设,当这些装饰灯闪烁一次时.
(Ⅰ)求的概率.
(Ⅱ)求的概率分布列及的数学期望.
当前题号:2 | 题型:解答题 | 难度:0.99
某企业2017年招聘员工,其中五种岗位的应聘人数、录用人数和录用比例(精确到)如下:
岗位
男性应聘人数
男性录用人数
男性录用比例
女性应聘人数
女性录用人数
女性录用比例

269
167

40
24


40
12

202
62


177
57

184
59


44
26

38
22


3
2

3
2

总计
533
264

467
169

 
(Ⅰ)从表中所有应聘人员中随机选择1人,试估计此人被录用的概率;
(Ⅱ)从应聘岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;
(Ⅲ)表中各岗位的男性、女性录用比例都接近(二者之差的绝对值不大),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)
当前题号:3 | 题型:解答题 | 难度:0.99
某智能共享单车备有两种车型,采用分段计费的方式营用型单车每分钟收费元(不足分钟的部分按分钟计算),型单车每分钟收费元(不足分钟的部分按分钟计算),现有甲乙丙三人,分别相互独立第到租车点租车骑行(各租一车一次),设甲乙丙不超过分钟还车的概率分别为,并且三个人每人租车都不会超过分钟,甲乙均租用型单车,丙租用型单车.
(1)求甲乙两人所付的费用之和等于丙所付的费用的概率;
(2)设甲乙丙三人所付费用之和为随机变量,求的分布列和数学期望.
当前题号:4 | 题型:解答题 | 难度:0.99
盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).
(1)求事件 “在一次试验中,得到的数为虚数”的概率与事件 “在四次试验中,
至少有两次得到虚数” 的概率
(2)在两次试验中,记两次得到的数分别为,求随机变量的分布列与数学期望
当前题号:5 | 题型:解答题 | 难度:0.99
某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频数
5
10
15
10
5
5
赞成人数
4
6
9
6
3
4
 
(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望;
(Ⅲ)若在这50名被调查者中随机发出20份的调查问卷,记为所发到的20人中赞成“车辆限行”的人数,求使概率取得最大值的整数.
当前题号:6 | 题型:解答题 | 难度:0.99
为了治理大气污染,某市2017年初采用了一系列措施,比如“煤改电”,“煤改气”,“整治散落污染企业”等.下表是该市2016年11月份和2017年11月份的空气质量指数()(指数越小,空气质量越好)统计表.根据表中数据回答下列问题:

(1)将2017年11月的空气质量指数数据用该天的对应日期作为样本编号,再用系统抽样方法从中抽取6个数据,若在2017年11月16日到11月20日这五天中用简单随机抽样抽取到的样本的编号是19号,写出抽出的样本数据;
(2)根据《环境空气质量指数()技术规定(试行)》规定:当空气质量指数为(含50)时,空气质量级别为一级,用从(1)中抽出的样本数据中随机抽取三天的数据,空气质量级别为一级的天数为,求的分布列及数学期望;
(3)求出这两年11月空气质量指数为一级的概率,你认为该市2017年初开始采取的这些大气污染治理措施是否有效?
当前题号:7 | 题型:解答题 | 难度:0.99
某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值
,当时,产品为一级品;当时,产品为二级品,当时,产品为三级品,现用两种新配方(分别称为配方和配方)做实验,各生产了100件这种产品,
并测量了每件产品的质量指标值,得到下面的试验结果:(以下均视频率为概率)

配方的频数分配表

指标值分组

频数

10

30

40

20

 

配方的频数分配表

指标值分组

频数

5

10

15

40

30

 

(Ⅰ)若从配方产品中有放回地随机抽取3件,记“抽出的配方产品中至少1件二级品”为事件,求事件发生的概率
(Ⅱ)若两种新产品的利润率与质量指标满足如下关系:其中,从长期来看,投资哪种配方的产品平均利润率较大?
当前题号:8 | 题型:解答题 | 难度:0.99
根据以往的经验,某建筑工程施工期间的降水量(单位:)对工期的影响如下表:
降水量




工期延误天数
0
1
3
6
 
根据某气象站的资料,某调查小组抄录了该工程施工地某月前天的降水量的数据,绘制得到降水量的折线图,如下图所示.

(1)根据降水量的折线图,分别求该工程施工延误天数的频率;
(2)以(1)中的频率作为概率,求工期延误天数的分布列及数学期望与方差.
当前题号:9 | 题型:解答题 | 难度:0.99
某单位年会进行抽奖活动,在抽奖箱里装有张印有“一等奖”的卡片,张印
有“二等奖”的卡片, 3张印有“新年快乐”的卡片,抽中“一等奖”获奖元, 抽中“二等奖”获奖元,抽中“新年快乐”无奖金.
(1)单位员工小张参加抽奖活动,每次随机抽取一张卡片,抽取后不放回.假如小张一定要将所有获奖卡片全部抽完才停止. 记表示“小张恰好抽奖次停止活动”,求的值;
(2)若单位员工小王参加抽奖活动,一次随机抽取张卡片.
表示“小王参加抽奖活动中奖”,求的值;
②设表示“小王参加抽奖活动所获奖金数(单位:元)”,求的分布列和数学期望.
当前题号:10 | 题型:解答题 | 难度:0.99