刷题首页
题库
高中数学
题干
对某个数学题,甲解出的概率为
,乙解出的概率为
,两人独立解题.记
X
为解出该题的人数,则
E
(
X
)=________.
上一题
下一题
0.99难度 填空题 更新时间:2018-03-03 07:06:45
答案(点此获取答案解析)
同类题1
甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下:
测试指标分数
甲产品
8
12
40
32
8
乙产品
7
18
40
29
6
(1)根据以上数据,完成下面的
列联表,并判断是否有
的有把握认为两种产品的质量有明显差异?
甲产品
乙产品
合计
合格品
次品
合计
(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记
为生产1件甲产品和1件乙产品所得的总利润,求随机变量
的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率).
附:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.702
2.706
3.841
5.024
6.635
7.879
10.828
同类题2
手机是人们必不可少的工具,极大地方便了人们的生活、工作、学习,现代社会的衣食住行都离不开它.某调查机构调查了某地区各品牌手机的线下销售情况,将数据整理得如下表格:
品牌
其他
销售比
每台利润(元)
100
80
85
1000
70
200
该地区某商场岀售各种品牌手机,以各品牌手机的销售比作为各品牌手机的售出概率.
(1)此商场有一个优惠活动,每天抽取一个数字
(
,且
),规定若当天卖出的第
台手机恰好是当天卖出的第一台
手机时,则此
手机可以打5折.为保证每天该活动的中奖概率小于0.05,求
的最小值;(
,
)
(2)此商场中一个手机专卖店只出售
和
两种品牌的手机,
,
品牌手机的售出概率之比为
,若此专卖店一天中卖出3台手机,其中
手机
台,求
的分布列及此专卖店当天所获利润的期望值.
同类题3
某产品按行业生产标准分成6个等级,等级系数
ξ
依次为1、2、3、4、5、6,按行业规定产品的等级系数
ξ
≥5的为一等品,3≤
ξ
<5的为二等品,
ξ
<3的为三等品.
若某工厂生产的产品均符合行业标准,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:
1 3 1 1 6 3 3 4 1 2
4 1 2 5 3 1 2 6 3 1
6 1 2 1 2 2 5 3 4 5
(1)以此30件产品的样本来估计该厂产品的总体情况,试分别求出该厂生产的产品为一等品、二等品和三等品的概率;
(2)已知该厂生产一件产品的利润
y
(单位:元)与产品的等级系数
ξ
的关系式为
,若从该厂大量产品中任取两件,其利润记为
Z
,求
Z
的分布列和均值.
同类题4
为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过
的有20人,不超过
的有10人.在20名女性驾驶员中,平均车速超过
的有5人,不超过
的有15人.
(Ⅰ)完成下面的列联表,并判断是否有
的把握认为平均车速超过
的人与性别有关;
平均车数超过
人数
平均车速不超过
人数
合计
男性驾驶员人数
女性驾驶员人数
合计
(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随即抽取3辆,记这3辆车中驾驶员为女性且车速不超过
的车辆数为
,若每次抽取的结果是相互独立的,求
的分布列和数学期望
参考公式:
,其中
.
参考数据:
0.150
0.100
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
同类题5
从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),得到如图5的茎叶图,整数位为茎,小数位为叶,如27.1mm的茎为27,叶为1.
(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)
(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:
试分别估计甲、乙两种棉花纤维长度等级为二级的概率;
(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记
为抽取的棉花纤维长度为二级的根数,求
的分布列和数学期望.
相关知识点
计数原理与概率统计
随机变量及其分布
离散型随机变量及其分布列
离散型随机变量的分布列
写出简单离散型随机变量分布列
离散型随机变量的均值