- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知箱中装有个
白球和
个黑球,且规定:取出一个白球得
分,取出一个黑球得
分.现从该箱中任取
个球,记随机变量
为取出
球所得分数之和.
(
)求
的分布列;
(
)求
的数学期望
.







(


(



甲,乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为
,
,
和
的分布列如下表.

(
)分别求期望
和
.
(
)试对这两名工人的技术水平进行比较.





(



(

(理)某电视台举办的闯关节目共有五关,只有通过五关才能获得奖金,规定前三关若有失败即结束,后两关若有失败再给一次从失败的关开始继续向前闯的机会(后两关总共只有一次机会),已知某人前三关每关通过的概率都是,后两关每关通过的概率都是
.
(1)求该人获得奖金的概率;
(2)设该人通过的关数为X,求随机变量X的分布列及数学期望.
(理)(2017·河南信阳二模)
如图所示,A,B两点由5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P(ξ≥8)=____.
从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),得到如图5的茎叶图,整数位为茎,小数位为叶,如27.1mm的茎为27,叶为1.

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)
(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:

试分别估计甲、乙两种棉花纤维长度等级为二级的概率;
(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记
为抽取的棉花纤维长度为二级的根数,求
的分布列和数学期望.

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小;(只需写出估计的结论,不需说明理由)
(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:

试分别估计甲、乙两种棉花纤维长度等级为二级的概率;
(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取4根,记


某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有3个红球,3个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取3个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(2)记一次抽奖获得的红包奖金数(单位:元)为
,求
的分布列及数学期望,并计算这20位顾客(假定每位获得抽奖机会的顾客都会去抽奖)在抽奖中获得红包的总奖金数的平均值.
①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;
②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;
③若取得的3个小球只有1种颜色,则该顾客中得一等奖,奖金是一个10元的红包;
④若取得的3个小球有3种颜色,则该顾客中得二等奖,奖金是一个5元的红包;
⑤若取得的3个小球只有2种颜色,则该顾客中得三等奖,奖金是一个2元的红包.
抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);
(2)记一次抽奖获得的红包奖金数(单位:元)为


在篮球比赛中,如果某位球员的得分,篮板,助攻,抢断,盖帽中有两个值达到
或
以上,就称该球员拿到了两双.下表是某球员在最近五场比赛中的数据统计:
(
)从上述比赛中任选
场,求该球员拿到“两双”的概率.
(
)从上述比赛中任选
场,设该球员拿到“两双”的次数为
,求
的分布列及数学期望.
(
)假设各场比赛互相独立,将该球员在上述比赛中获得“两双”的频率作为概率,设其在接下来的三场比赛中获得“两双”的次数为
,试比赛
与
的大小关系(只需写出结论).


场次 | 得分 | 篮板 | 助攻 | 抢断 | 盖帽 |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(


(




(




2018年2月25日,平昌冬奥会闭幕式上的“北京8分钟”惊艳了世界.某学校为了让学生们更好地了解奥运,了解新时代祖国的科技发展,在高二年级举办了一次知识问答比赛.比赛共设三关,第一、二关各有两个问题,两个问题全答对,可进入下一关;第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得分别为1、2、3分的积分奖励,高二(一)班对三关中每个问题回答正确的概率依次为
,且每个问题回答正确与否相互独立.
(1)记
表示事件“高二(一)班未闯到第三关”,求
的值;
(2)记
表示高二(一)班所获得的积分总数,求
的分布列和期望.

(1)记


(2)记

