- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在
岁(含
岁和
岁)之间的
人进行调查,并按年龄层次绘制频率分布直方图,如下图所示.若规定年龄分布在
岁(含
岁和
岁)为“老年人”.

(1)若每一组数据的平均值用该区间中点值来代替,试估算所调查的
人的平均年龄;
(2)将上述人口分布的频率视为该城市在
年龄段的人口分布的概率.从该城市
年龄段市民中随机抽取
人,记抽到“老年人”的人数为
,求随机变量
的分布列和数学期望.








(1)若每一组数据的平均值用该区间中点值来代替,试估算所调查的

(2)将上述人口分布的频率视为该城市在





某学校高一年级在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动,高一(1)班学生50名学生在上学期参加该项活动的次数统计如图所示.

(Ⅰ)从该班中任意选两名学生,求他们参加活动的次数不相等的概率;
(Ⅱ)从该班中任意选两名学生,用
表示这两人参加活动次数之差对的绝对值,求随机变量
的分布列及数学期望
;
(Ⅲ)从该班中任意选两名学生,用
表示这两人参加活动次数之和,记“函数
在区间(3,5)上只有一个零点”为事件A,求事件A发生的概率.

(Ⅰ)从该班中任意选两名学生,求他们参加活动的次数不相等的概率;
(Ⅱ)从该班中任意选两名学生,用



(Ⅲ)从该班中任意选两名学生,用


(2015秋•友谊县校级期末)若某一离散型随机变量ξ的概率分布如下表,且E(ξ)=1.5,则a﹣b的值为 .
ξ | 0 | 1 | 2 | 3 |
P | 0.1 | a | b | 0.1 |
甲、乙两所学校的代表队参加汉字听写大赛.在比赛第二阶段,两队各剩最后两名队员上场,甲队两名队员通过第二阶段比赛的概率分别是
和
,乙队两名队员通过第二阶段比赛的概率都是
.通过了第二阶段比赛的队员,才能进入第三阶段比赛(若某队两个队员都没有通过第二阶段的比赛,则该队进入第三阶段比赛人数为0).所有参赛队员比赛互不影响,其过程、结果都是彼此独立的.
(1)求第三阶段比赛,甲、乙两队人数相等的概率;
(2)
表示第三阶段比赛甲、乙两队的人数差的绝对值,求
的分布列和数学期望.



(1)求第三阶段比赛,甲、乙两队人数相等的概率;
(2)


某卫视的大型娱乐节目现场,所有参加的节目都由甲、乙、丙三名专业老师投票决定是否通过进入下一轮,甲、乙、丙三名老师都有“通过”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率均为
,且三人投票相互没有影响,若投票结果中至少有两张“通过”票,则该节目获得“通过”,否则该节目不能获得“通过”.
(1)求某节目的投票结果获“通过”的概率;
(2)记某节目投票结果中所含“通过”和“待定”票票数之和为
,求
的分布列和数学期望.

(1)求某节目的投票结果获“通过”的概率;
(2)记某节目投票结果中所含“通过”和“待定”票票数之和为


某精密仪器生产有两道相互独立的先后工序,每道工序都要经过相互独立的工序检查,且当第一道工序检查合格后才能进入第二道工序,两道工序都合格,产品才完全合格.经长期监测发现,该仪器第一道工序检查合格的概率为
,第二道工序检查合格的概率为
,已知该厂三个生产小组分别每月负责生产一台这种仪器.
(Ⅰ)求本月恰有两台仪器完全合格的概率;
(Ⅱ)若生产一台仪器合格可盈利
万元,不合格则要亏损
万元,记该厂每月的赢利额为
,求
的分布列和每月的盈利期望.


(Ⅰ)求本月恰有两台仪器完全合格的概率;
(Ⅱ)若生产一台仪器合格可盈利




某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类可得:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(1)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(2)将上述调查所得到的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中语文、外语两科成绩至少有一科优秀的个数为
,求
的分布列和期望
.
附:
(1)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(2)将上述调查所得到的频率视为概率,从该校高二年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中语文、外语两科成绩至少有一科优秀的个数为



附:

![]() | 0.010 | 0.005 | 0.001 |
![]() | 6.635 | 7.879 | 10.828 |
某教育主管部门到一所中学检查学生的体质健康情况.从全体学生中,随机抽取12
名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如下:

根据学生体质健康标准,成绩不低于76的为优良.
(1)写出这组数据的众数和中位数;
(2)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健
康测试,求至少有1人成绩是“优良”的概率;
(3)从抽取的12人中随机选取3人,记
表示成绩“优良”的学生人数,求
的分布列
及期望.
名进行体质健康测试,测试成绩(百分制)以茎叶图形式表示如下:

根据学生体质健康标准,成绩不低于76的为优良.
(1)写出这组数据的众数和中位数;
(2)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健
康测试,求至少有1人成绩是“优良”的概率;
(3)从抽取的12人中随机选取3人,记


及期望.
某公司因发展需要,现分别对A,B,C三个项目进行竞标,现需对三个项目竞标的资料进行审核,每个项目均有两次资料审核的机会,若第一次资料审核未通过,可通过增补资料进行第二次审核,若第一次资料审核通过,则无需进行第二次资料审核. 已知该公司在A,B,C 三个项目上首次资料审核通过的概率分别为
,若第一次没有通过,经增补资料, 第二次A,B,C三个项目资料审核通过的概率分别为
,三个项目竞标相互独立.
(1)求该公司在首次竞标中,至少两个项目资料审核通过的概率;
(2)由于资金限制,该公司目前只能对三个项目中的一个进行投资,若A,B,C三个项目竞标成功,投资收益分别为220万元,300万元和270万元;若竞标失败,该公司将分别面临20万元,21万元,6万元的亏损,假定资料审核通过即竞标成功,若你是公司经理,则最应在哪个项目竞标上做充分准备?并说明理由.


(1)求该公司在首次竞标中,至少两个项目资料审核通过的概率;
(2)由于资金限制,该公司目前只能对三个项目中的一个进行投资,若A,B,C三个项目竞标成功,投资收益分别为220万元,300万元和270万元;若竞标失败,该公司将分别面临20万元,21万元,6万元的亏损,假定资料审核通过即竞标成功,若你是公司经理,则最应在哪个项目竞标上做充分准备?并说明理由.
已知随机变量
的取值为不大于
的非负整数值,它的分布列为:
生成的函数
,令
.
(I)若由
生成的函数
,求
的值;
(II)求证:随机变量
的数学期望
,
的方差
;
(
)
(Ⅲ)现投掷一枚骰子两次,随机变量
表示两次掷出的点数之和,此时由
生成的函数记为
,求
的值.


![]() | 0 | 1 | 2 | ![]() | n |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
其中(
)满足:
,且
.



(I)若由



(II)求证:随机变量




(

(Ⅲ)现投掷一枚骰子两次,随机变量



