- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机变量
- 离散型随机变量
- + 离散型随机变量的分布列
- 写出简单离散型随机变量分布列
- 利用随机变量分布列的性质解题
- 由随机变量的分布列求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元.供大于求时,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(1)若商店一天购进该商品10件,求当天的利润
(单位:元)关于当天需求量
(单位:件,
)的函数解析式;
(2)商店记录了50天该商品的日需求量
(单位:件),整理得下表:

若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求该商品一天的利润
的分布列及平均值.
(1)若商店一天购进该商品10件,求当天的利润



(2)商店记录了50天该商品的日需求量


若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求该商品一天的利润

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了
人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
(I)由以上统计数据填下面
列联表并问是否有
%的把握认为“月收入以
为分界点”对“楼市限购令”的态度有差异;
(II)若对月收入在
,
的被调查人中各随机选取两人进行追踪调查,记选中的
人中不赞成“楼市限购令”人数为
,求随机变量
的分布列及数学期望.
参考数据:


月收入(单位百元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
赞成人数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |



| 月收入低于![]() | 月收入低于![]() | 合计 |
赞成 | ![]() | ![]() | |
不赞成 | ![]() | ![]() | |
合计 | | | |





参考数据:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

某市政府为了确定一个较为合理的居民用电标准,必须先了解全市居民日常用电量的分布情况.现采用抽样调查的方式,获得了n位居民在2012年的月均用电量(单位:度)数据,样本统计结果如下图表:

(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
分 组 | 频 数 | 频 率 |
[0, 10) | | 0.05 |
[10,20) | | 0.10 |
[20,30) | 30 | |
[30,40) | | 0.25 |
[40,50) | | 0.15 |
[50,60] | 15 | |
合 计 | n | 1 |

(1)求月均用电量的中位数与平均数估计值;
(2)如果用分层抽样的方法从这n位居民中抽取8位居民,再从这8位居民中选2位居民,那么至少有1位居民月均用电量在30至40度的概率是多少?
(3)用样本估计总体,把频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用电量在30至40度的居民数X的分布列.
威力实施“爱的教育”实践活动,宇华教育集团决定举行“爱在宇华”教师演讲比赛.焦作校区决定从高中部、初中部、小学部和幼教部这四个部门选出12人组成代表队代表焦作校区参赛,选手如下表:
焦作校区选手经过出色表现获得冠军,现要从中选出两名选手代表冠军队发言.
(1)求这两名队员来自同一部门的概率;
(2)设选出的两名选手中来自高中部的人数为
,求随机变量
的分布列及数学期望
.
部门 | 高中部 | 初中部 | 小学部 | 幼教部 |
人数 | 4 | 4 | 2 | 2 |
(1)求这两名队员来自同一部门的概率;
(2)设选出的两名选手中来自高中部的人数为



为了了解某工业园中员工的颈椎疾病与工作性质是否有关,在工业园内随机的对其中50名工作人员是否患有颈椎疾病进行了抽样调查,得到如下的列联表.
已知在全部50人中随机抽取1人,抽到患有颈椎疾病的人的概率为
.
(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患颈椎疾病与工作性质有关?说明你的理由;
(2)已知在患有颈椎疾病的10名蓝领中,有3为工龄在15年以上,现在从患有颈椎疾病的10名蓝领中,选出3人进行工龄的调查,记选出工龄在15年以上的人数为
,求
的分布列及数学期望.
参考公式:
,其中
.
下面的临界值表仅供参考:
| 患有颈椎疾病 | 没有患颈椎疾病 | 合计 |
白领 | | 5 | |
蓝领 | 10 | | |
合计 | | | 50 |

(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患颈椎疾病与工作性质有关?说明你的理由;
(2)已知在患有颈椎疾病的10名蓝领中,有3为工龄在15年以上,现在从患有颈椎疾病的10名蓝领中,选出3人进行工龄的调查,记选出工龄在15年以上的人数为


参考公式:


下面的临界值表仅供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为了增强环保意识,我校从男生中随机抽取了60人,从女生中随机抽取了50人参加环保知识测试,统计数据如下表所示:
(Ⅰ)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(Ⅱ)为参加市里举办的环保知识竞赛,学校举办预选赛,已知在环保测试中优秀的同学通过预选赛的概率为
,现在环保测试中优秀的同学中选3人参加预选赛,若随机变量
表示这3人中通过预选赛的人数,求
的分布列与数学期望.
附:
=
| 优秀 | 非优秀 | 总计 |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
(Ⅰ)试判断是否有99%的把握认为环保知识是否优秀与性别有关;
(Ⅱ)为参加市里举办的环保知识竞赛,学校举办预选赛,已知在环保测试中优秀的同学通过预选赛的概率为



![]() | 0.500 | 0.400 | 0.100 | 0.010 | 0.001 |
![]() | 0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
附:


某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高三年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语成绩不优秀的有140人,外语成绩优秀但语文成绩不优秀的有100人.
(1)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩和外语成绩有关系?
(2)将上述调查所得到的频率视为概率,从该校高三年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望.

(1)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩和外语成绩有关系?
(2)将上述调查所得到的频率视为概率,从该校高三年级学生成绩中,有放回地随机抽取3名学生的成绩,记抽取的3个成绩中语文、外语两科成绩至少有一科优秀的个数为X,求X的分布列和期望.
![]() | 0.010 | 0.005 | 0.001 |
![]() | 6.635 | 7.789 | 10.828 |

某鱼类养殖户在一个鱼池中养殖一种鱼,每季养殖成本为
元,此鱼的市场价格与鱼池的产量均具有随机性,且互不影响,其具体情况如下表:
(1)设
表示在这个鱼池养殖
季这种鱼的利润,求
的分布列和期望;
(2)若在这个鱼池中连续
季养殖这种鱼,求这
季中至少有
季的利润不少于
元的概率.

鱼池产量(![]() | ![]() | ![]() | | 鱼的市场价格(元/![]() | ![]() | ![]() |
概率 | ![]() | ![]() | | 概率 | ![]() | ![]() |



(2)若在这个鱼池中连续




袋中装有4个白棋子,3个黑棋子,从袋中随机地取出棋子,若取到一个白棋子得2分,取到一个黑棋子得1分,现从袋中任取4个棋子.
(1)求得分
的分布列;
(2)求得分大于6的概率.
(1)求得分

(2)求得分大于6的概率.