- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为调查了解某药物使用后病人的康复时间,从1000个使用该药的病人的康复时间中抽取了24个样本,数据如下图中的茎叶图(单位:周),专家指出康复时间在7周之内(含7周)是快效时间

(1)求这24个样本中达到快效时间的频率;
(2)以(1)中的频率作为概率,从这1000个病人中随机选取3人,记这3人中康复时间达到快效时间的人数为
,求
的分布列及数学期望

(1)求这24个样本中达到快效时间的频率;
(2)以(1)中的频率作为概率,从这1000个病人中随机选取3人,记这3人中康复时间达到快效时间的人数为


有一种掷骰子移动棋子的游戏,分为
两方,开始时棋子在
方,根据下列①②③的规则移动棋子:①骰子出现1点时,不移动棋子;②骰子出现2,3,4,5点时,把棋子移动对方;③骰子出现6点时,如果棋子在
方就不动,如果在
方,就移到
方,记
为骰子掷
次后棋子仍在
方的概率.
(1)求
的值;
(2)求数列
的通项公式;
(3)求
的最大值和最小值.








(1)求

(2)求数列

(3)求

现有长分别为
的钢管各3根(每根钢管质地均匀、粗细相同附有不同的编号),从中随机抽取2根(假设各钢管被抽取的可能性是均等的),再将抽取的钢管相接焊成笔直的一根.若
表示新焊成的钢管的长度(焊接误差不计).
(1)求
的分布列;
(2)若
,求实数
的取值范围.


(1)求

(2)若


近日,济南楼市迎来去库存一系列新政,其中房产税收中的契税和营业税双双下调,对住房市场持续增长和去库存产生积极影响.某房地产公司从两种户型中各拿出9套进行促销活动,其中
户型每套面积为100平方米,均价1.1万元/平方米,
户型每套面积80平方米,均价1.2万元/平方米.下表是这18套住宅每平方米的销售价格:(单位:万元/平方米):

(1)求
的值;
(2)张先生想为自己和父母买两套售价小于100万元的房子,求至少有一套面积为100平方米的概率.



(1)求

(2)张先生想为自己和父母买两套售价小于100万元的房子,求至少有一套面积为100平方米的概率.
一口袋中有5只球,标号分别为1,2,3,4,5.
(I)如果从袋中同时取出3只,以
表示取出的三只球的最小号码,求
的分布列;
(II)如果从袋中取出1只,记录号码后放回袋中,再取1只,记录号码后放回袋中,这样重复三次,以
表示三次中取出的球的最小号码,求
的分布列.
(I)如果从袋中同时取出3只,以


(II)如果从袋中取出1只,记录号码后放回袋中,再取1只,记录号码后放回袋中,这样重复三次,以


根据我国发布的《环境空气质量只收(AQI)技术规定》:空气质量指数划分为0~50、51~100、101~150、151~200、201~300和大于300共六级,分别对应空气质量指数的六个级别,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显. 专家建议:当空气质量指数小于150时,可以户外运动;空气质量指数151及以上,不适合进行旅游等户外活动.以下是某市2015年12月中旬的空气质量指数情况:

(1)求12月中旬市民不适合进行户外活动的概率;
(2)一外地游客在12月中旬来此城市旅游,想连续游玩两天,求适合旅游的概率.

(1)求12月中旬市民不适合进行户外活动的概率;
(2)一外地游客在12月中旬来此城市旅游,想连续游玩两天,求适合旅游的概率.
为配合4月23日“世界读书日”,某校将4月18日-4月24日定为学校读书周,并从全校学生中随机抽取
名学生,获得了他们一周课外读书时间(单位:小时)的数据如下:

(1)求
的值及该校读书周人均读书时间估计值;
(2)如果按读书时间
用分层抽样的方法从
名学生中抽取20人,再从这20人中随机选取3人,记
为课外读书时间落在
的人数,求
的分布列和数学期望;
(3)将样本频率视为概率,从该校学生中随机选取3人,记
表示课外读书时间落在
的人数,求
的分布列和数学期望


(1)求

(2)如果按读书时间





(3)将样本频率视为概率,从该校学生中随机选取3人,记



由于全力备战高考,造成高三学生视力普遍下降,现从我市所有高三学生中随机抽取16名学生,经医生用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(1)指出这组数据的众数和中位数;
(2)若视力测试结果不低于5.0则称为“好视力”,求医生从这16人中随机选 取3人,至多有1人是“好视力”的概率;
(3)以这16人的样本数据来估计全市的总体数据,若从我市考生中(人数很多)任选3人,记
表示抽到“好视力”学生的人数,求
的分布列及数学期望.

(1)指出这组数据的众数和中位数;
(2)若视力测试结果不低于5.0则称为“好视力”,求医生从这16人中随机选 取3人,至多有1人是“好视力”的概率;
(3)以这16人的样本数据来估计全市的总体数据,若从我市考生中(人数很多)任选3人,记


学校游园活动有这样一个游戏:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除了颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).
(1)求在1次游戏中:
①摸出3个白球的概率.
②获奖的概率.
(2)求在3次游戏中获奖次数X的分布列.(用数字作答)
(1)求在1次游戏中:
①摸出3个白球的概率.
②获奖的概率.
(2)求在3次游戏中获奖次数X的分布列.(用数字作答)