- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为评估设备
生产某种零件的性能,从设备
生产零件的流水线上随机抽取100个零件作为样本,测量其直径后,整理得到如表:
经计算,样本的平均值
,标准差
,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为
,并根据以下不等式进行评判(
表示相应事件的频率):①
;②
;③
.评判规则为:若同时满足上述三个不等式,则设备性能等级为甲;仅满足其中两个,则设备性能等级为乙;若仅满足其中一个,则设备性能等级为丙;若全部不满足,则设备性能等级为丁.试判断设备
的性能等级.
(2)将直径小于等于
或直径大于
的零件认为是次品.
(i)从设备
的生产流水线上任意抽取2个零件,计算其中次品个数
的数学期望
;
(ii)从样本中任意抽取2个零件,计算其中次品个数
的数学期望
.


直径/![]() | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值


(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为






(2)将直径小于等于


(i)从设备



(ii)从样本中任意抽取2个零件,计算其中次品个数


在一次语文测试中,有一道把我国近期新书《声涯》、《关于上班这件事》、《长尾理论》、《游园惊梦:昆曲艺术审美之旅》与它们的作者连线题,已知连对一个得3分,连错一个不得分,一位同学该题得
分.
(1)求该同学得分不少于6分的概率;
(2)求
的分布列及数学期望.

(1)求该同学得分不少于6分的概率;
(2)求

(本小题满分12分)
某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为
,二等品率为
;B型产品的一等品率为
,二等品率为
。生产1件A型产品,若是一等品则获得4万元利润,若是二等品则亏损1万元;生产1件B型产品,若是一等品则获得6万元利润,若是二等品则亏损2万元。设生产各件产品相互独立。
(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记
(单位:万元)为生产1件A型产品和1件B型产品可获得的利润,求
的分布列及期望值.
某汽车配件厂生产A、B两种型号的产品,A型产品的一等品率为




(1)求生产4件A型产品所获得的利润不少于10万元的概率;
(2)记


从2003年开始,我国就通过实施高校自主招生探索人才选拔制度改革,允许部分高校拿出一定比例的招生名额,选拔那些有特殊才能的学生.某学生参加一个高校的自主招生考试,考试分笔试和面试两个环节,笔试有A、B两个题目,该学生答对A、B两题的概率分别为
,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为
,至少答对一题即可被录取.(假设每个环节的每个问题回答正确与否是相对独立的)
(1)求该学生被学校录取的概率;
(2)设该学生答对题目的个数为
,求
的分布列和数学期望.


(1)求该学生被学校录取的概率;
(2)设该学生答对题目的个数为


将10个白小球中的3个染成红色,3个染成黄色,试解决下列问题:
(1)求取出3个小球中红球个数

(2)求取出3个小球中红球个数多于白球个数的概率.
(本小题满分12分)
若盒中装有同一型号的灯泡共12只,其中有9只合格品,3只次品.
(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;
(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡前取出的次品灯泡只数X的分布列和数学期望.
若盒中装有同一型号的灯泡共12只,其中有9只合格品,3只次品.
(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率;
(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡前取出的次品灯泡只数X的分布列和数学期望.
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
(本小题满分12分)
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.
有甲、乙两种相互独立的预防措施可以降低某地区某灾情的发生.单独采用甲、乙预防措施后,灾情发生的概率分别为0.08和0.10,且各需要费用60万元和50万元.在不采取任何预防措施的情况下发生灾情的概率为0.3.如果灾情发生,将会造成800万元的损失.(设总费用=采取预防措施的费用+可能发生灾情损失费用)
(I)若预防方案允许甲、乙两种预防措施单独采用,他们各自总费用是多少?
(II)若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防方案使总费用最少的那个方案.