- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为
五个等级进行数据统计如下:

根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为
的人数;
(2)若等级
分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为
的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为
的人数
的分布列与数学期望.


根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为

(2)若等级

(3)为更深入了解教学情况,将成绩等级为



京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄
服从正态分布
同时随机抽取
位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在
内),样本数据分别区间为
由此得到如图所示的频率分布直方图.

(Ⅰ) 若
求
的值;
(Ⅱ)现从样本年龄在
的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为
,且每个人回答正确与否相互之间没有影响,用
表示票友们赢得老年戏曲演唱机的台数,求
的分布列及数学期望.






(Ⅰ) 若


(Ⅱ)现从样本年龄在




某公司有
五辆汽车,其中
两辆汽车的车牌尾号均为1.
两辆汽车的车牌尾号均为2,
车的车牌尾号为6,已知在非限行日,每辆车可能出车或不出车,
三辆汽车每天出车的概率均为
,
两辆汽车每天出车的概率均为
,且五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:
(1)求该公司在星期一至少有2辆汽车出国的概率;
(2)设
表示该公司在星期二和星期三两天出车的车辆数之和,求
的分布列及期望.








车牌尾号 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
限行日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
(1)求该公司在星期一至少有2辆汽车出国的概率;
(2)设


在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.(若
是一个三位正整数,且
的个位数字大于十位数字,十位数字大于百位数字,则称
为“三位递增数”如137,359,567等)得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.已知某同学甲参加活动,求甲得分X的分布列.



春节来临,有农民工兄弟
、
、
、
四人各自通过互联网订购回家过年的火车票,若订票成功即可获得火车票,即他们获得火车票与否互不影响.若
、
、
、
获得火车票的概率分别是
,其中
,又
成等比数列,且
、
两人恰好有一人获得火车票的概率是
.
(1)求
的值;
(2)若
、
是一家人且两人都获得火车票才一起回家,否则两人都不回家.设
表示
、
、
、
能够回家过年的人数,求
的分布列和期望
.














(1)求

(2)若









某市对贫困家庭自主创业给予小额贷款补贴,每户贷款额为
万元,贷款期限有
个月、
个月、
个月、
个月、
个月五种,这五种贷款期限政府分别需要补助
元、
元、
元、
元、
元,从
年享受此项政策的困难户中抽取了
户进行了调查统计,选取贷款期限的频数如下表:
以商标各种贷款期限的频率作为
年贫困家庭选择各种贷款期限的概率.
(1)某小区
年共有
户准备享受此项政策,计算其中恰有两户选择贷款期限为
个月的概率;
(2)设给享受此项政策的某困难户补贴为
元,写出
的分布列,若预计
年全市有
万户享受此项政策,估计
年该市共要补贴多少万元.













贷款期限 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() |
以商标各种贷款期限的频率作为

(1)某小区



(2)设给享受此项政策的某困难户补贴为





在某校组织的“共筑中国梦”竞赛活动中,甲、乙两班各有6名选手参赛,在第一轮笔试环节中,评委将他们的笔试成绩作为样本数据,绘制成如图所示的茎叶图,为了增加结果的神秘感,主持人故意没有给出甲、乙两班最后一位选手的成绩,只是告诉大家,如果某位选手的成绩高于90分(不含90分),则直接“晋级”.

(1)求乙班总分超过甲班的概率;
(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.若主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为
,求
的分布列及数学期望.

(1)求乙班总分超过甲班的概率;
(2)主持人最后宣布:甲班第六位选手的得分是90分,乙班第六位选手的得分是97分.若主持人从甲乙两班所有选手成绩中分别随机抽取2个,记抽取到“晋级”选手的总人数为


下表是某校高三一次月考5个班级的数学、物理的平均成绩:
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量
,
的线性回归方程
;
(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为
,求
的分布列和数学期望.
附:
,
班级 | 1 | 2 | 3 | 4 | 5 |
数学(![]() | 111 | 113 | 119 | 125 | 127 |
物理(![]() | 92 | 93 | 96 | 99 | 100 |
(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量



(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为


附:


从装有大小相同的3个红球和6个白球的袋子中,不放回地每摸出2个球为一次试验,直到摸出的球中有红球时试验结束.则第一次试验恰摸到一个红球和一个白球概率是_______ ;若记试验次数为
,则
的数学期望
=________ .


