- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 离散型随机变量及其分布列
- 随机变量
- 离散型随机变量
- 离散型随机变量的分布列
- 二项分布及其应用
- 离散型随机变量的均值与方差
- 正态分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
冰汛期间,某地一条河流的狭窄地段被一巨大冰块阻塞,为了保持河流畅通,爆破部门需要对该冰块爆破,已知爆破部门共有5枚炮弹,每发炮弹命中冰块的概率均为
,每次炮击相互独立,如连续2枚命中或连续3枚不中,则停止炮击,否则将炮弹打完.
(Ⅰ)求前4枚炮弹只命中1枚的概率;
(Ⅱ)求所耗用的炮弹数
的分布列及其数学期望.

(Ⅰ)求前4枚炮弹只命中1枚的概率;
(Ⅱ)求所耗用的炮弹数

在某大学自主招生的面试中,考生要从规定的6道科学题,4道人文题共10道题中,随机抽取3道作答,每道题答对得10分,答错或不答扣5分,已知甲、乙两名考生参加面试,甲只能答对其中的6道科学题,乙答对每道题的概率都是
,每个人答题正确与否互不影响.
(1)求考生甲得分
的分布列和数学期望
;
(2)求甲,乙两人中至少有一人得分不少于15分的概率.

(1)求考生甲得分


(2)求甲,乙两人中至少有一人得分不少于15分的概率.
中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在
岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:


(1)由以上统计数据填
列联表,并判断是否95%的把握认为以
岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;

(2)若以
岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取
人参加某项活动,现从这
人中随机抽
人.
①抽到
人是
岁以下时,求抽到的另一人是
岁以上的概率;
②记抽到
岁以上的人数为
,求随机变量
的分布列及数学期望.




(1)由以上统计数据填



(2)若以




①抽到



②记抽到



![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |

某手机卖场对市民进行国产手机认可度的调查,随机抽取
名市民,按年龄(单位:岁)进行统计和频数分布表和频率分布直线图如下:

(1)求频率分布表中
、
的值,并补全频率分布直方图;
(2)在抽取的这
名市民中,按年龄进行分层抽样,抽取
人参加国产手机用户体验问卷调查,现从这
人中随机选取
人各赠送精美礼品一份,设这
名市民中年龄在
内的人数
,求
的分布列及数学期望.

分组(岁) | 频数 |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
![]() | ![]() |
合计 | ![]() |

(1)求频率分布表中


(2)在抽取的这








为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘车补贴标准如下表:

某校研究性学习小组,从汽车市场上随机选取了
辆纯电动乘用车,根据其续驶里程
(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

(1)求
的值;
(2)若从这
辆纯电动乘用车中任选3辆,求选到的3辆车续驶里程都不低于180公里的概率;
(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为
(单位:万元),求
的分布列和数学期望
.

某校研究性学习小组,从汽车市场上随机选取了



(1)求

(2)若从这

(3)如果以频率作为概率,若某家庭在某汽车销售公司购买了2辆纯电动乘用车,设该家庭获得的补贴为



棉花的纤维长度是评价棉花质量的重要指标,某农科所的专家在土壤环境不同的甲、乙两块实验地分别种植某品种的棉花,为了评价该品种的棉花质量,在棉花成熟后,分别从甲、乙两地的棉花中各随机抽取20根棉花纤维进行统计,结果如下表:(记纤维长度不低于300
的为“长纤维”,其余为“短纤维”)
(1)由以上统计数据,填写下面
列联表,并判断能否在犯错误概率不超过0.025的前提下认为“纤维长度与土壤环境有关系”.
附:(1)
;
(2)临界值表;
(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为
,求
的分布列及数学期望.

纤维长度 | ![]() | ![]() | ![]() | ![]() | ![]() |
甲地(根数) | 3 | 4 | 4 | 5 | 4 |
乙地(根数) | 1 | 1 | 2 | 10 | 6 |
(1)由以上统计数据,填写下面

| 甲地 | 乙地 | 总计 |
长纤维 | | | |
短纤维 | | | |
总计 | | | |
附:(1)

(2)临界值表;
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)现从上述40根纤维中,按纤维长度是否为“长纤维”还是“短纤维”采用分层抽样的方法抽取8根进行检测,在这8根纤维中,记乙地“短纤维”的根数为


集成电路E由3个不同的电子元件组成,现由于元件老化,3个电子元件能正常工作的概率分别降为
,
,
,且每个电子元件能否正常工作相互独立。若3个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需要费用为100元。
(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.



(Ⅰ)求集成电路E需要维修的概率;
(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需费用。求X的分布列和均值.
为庆祝“2017年中国长春国际马拉松赛”,某单位在庆祝晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的6个小球,分别印有“长春马拉松”和“美丽长春”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“长春马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取3次.已知从盒中抽取两个小球不都是“美丽长春”标志的概率为

(Ⅰ)求盒中印有“长春马拉松”标志的小球个数;
(Ⅱ)用η表示某位嘉宾抽奖的次数,求η的分布列和期望.
2016年高一新生入学后,为了了解新生学业水平,某区对新生进行了水平测试,随机抽取了50名新生的成绩,其相关数据统计如下:
(Ⅰ)若从分数在
,
的被调查的新生中各随机选取2人进行追踪调查,求恰好有2名新生选择题得分不足24分的概率;
(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为
,求随机变量
的分布列和数学期望.
分数段 | 频数 | 选择题得分24分以上(含24分) |
![]() | 5 | 2 |
![]() | 10 | 4 |
![]() | 15 | 12 |
![]() | 10 | 6 |
![]() | 5 | 4 |
![]() | 5 | 5 |
(Ⅰ)若从分数在


(Ⅱ)在(Ⅰ)的条件下,记选中的4名新生中选择题得分不足24分的人数为

