如图,在中,,三角形内的空白部分由三个半径均为1的扇形构成,向内随机投掷一点,则该点落在阴影部分的概率为(   )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.

(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.
当前题号:2 | 题型:解答题 | 难度:0.99
在一次商贸交易会上,某商家在柜台前开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖. 抽奖规则是:从一个装有个红球和个白球的袋中无放回地取出个球,当三个球同色时则中奖.每人只能抽奖一次.
(1)求甲乙恰有一人中奖的概率;
(2)若甲计划在之间赶到,乙计划在之间赶到,求甲比乙提前到达的概率.
当前题号:3 | 题型:解答题 | 难度:0.99
如图,在中,,三角形内的空白部分由三个半径均为1的扇形构成,向内随机投掷一点,则该点落在阴影部分的概率为(   )
A.B.C.D.
当前题号:4 | 题型:单选题 | 难度:0.99
如图所示的长方形的长为2,宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子的总数为粒,其中落在飞鸟图案中的豆子有粒,据此请你估计图中飞鸟图案的面积约为(    )
A.B.C.D.
当前题号:5 | 题型:单选题 | 难度:0.99
如图,图中的大、小三角形分别为全等的等腰直角三角形,向图中任意投掷一飞镖,则飞镖落在阴影部分的概率为(   )
A.B.C.D.
当前题号:6 | 题型:单选题 | 难度:0.99
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽在《周髀算经》中注释了其理论证明,其基本思想是图形经过割补后面积不变.即通过如图所示的“弦图”,将匀股定理表述为:“勾股各自乘,并之,为弦实,开方除之,即弦”(其中分别为勾股弦);证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实”,即,化简得.现已知,向外围大正方形区域内随机地投掷一枚飞镖,飞镖落在中间小正方形内的概率是( )
A.B.C.D.
当前题号:7 | 题型:单选题 | 难度:0.99
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自小正方形的概率为(   )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角满足,若从图中随机取一点,此点落在阴影部分的概率是(   )
A.B.C.D.
当前题号:9 | 题型:单选题 | 难度:0.99
在区间内任取两个实数,则满足的概率等于( )
A.B.C.D.
当前题号:10 | 题型:单选题 | 难度:0.99