- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型-长度型
- + 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图),如果大正方形的面积为
,直角三角形中较小的锐角为
,
,在大正方形内取一点,则此点取自中间小正方形的概率为()





A.![]() | B.![]() | C.![]() | D.![]() |
如图,正方形
内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自正方形内白色部分的概率是

A.![]() | B.![]() |
C.![]() | D.![]() |
(1)已知函数
,其中
,求函数
的图象恰好经过第一、二、三象限的概率;
(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.



(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.
拿破仑为人好学,是法兰西科学院院士,他对数学方面很感兴趣,在行军打仗的空闲时间,经常研究平面几何。他提出了著名的拿破仑定理:以三角形各边为边分别向外(内)侧作等边三角形,则它们的中心构成一个等边三角形。如图所示,以等边
的三条边为边,向外作
个正三角形,取它们的中心
,顺次连接,得到
,图中阴影部分为
与
的公共部分。若往
中投掷一点,则该点落在阴影部分内的概率为( )









A.![]() | B.![]() | C.![]() | D.![]() |
七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,在此正方形中任取一点,则此点取自阴影部分的概率是______
