- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 几何概型-长度型
- + 几何概型-面积型
- 几何概型-体积型
- 可化为面积型的几何概型
- 几何概型-角度型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若a是集合{1,2,3,4,5,6,7}中任意选取的一个元素,则圆C:x2+(y-2)2=1与圆O:x2+y2=a2内含的概率为________.
设D是半径为R的圆周上的一定点,在圆周上随机取一点C,连接CD得一弦,若A表示“所得弦的长大于圆内接等边三角形的边长”,则P(A)=_____. 

(云南省昆明市2018届5月适应性检测)一种电子计时器显示时间的方式如图所示,每一个数字都在固定的全等矩形“显示池”中显示,且每个数字都由若干个全等的深色区域“
”组成.已知在一个显示数字8的显示池中随机取一点
,点
落在深色区域内的概率为
.若在一个显示数字0的显示池中随机取一点
,则点
落在深色区域的概率为( )








A.![]() | B.![]() | C.![]() | D.![]() |
如图,半径为
的圆
内有四个半径相等的小圆,其圆心分别为
,这四个小圆都与圆
内切,且相邻两小圆外切,则在圆
内任取一点,该点恰好取自阴影部分的概率为 ( )







A.![]() | B.![]() | C.![]() | D.![]() |
在古代,直角三角形中较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.三国时期吴国数学家赵爽用“弦图”( 如图) 证明了勾股定理,证明方法叙述为:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实.”这里的“实”可以理解为面积.这个证明过程体现的是这样一个等量关系:“两条直角边的乘积是两个全等直角三角形的面积的和(朱实二 ),4个全等的直角三角形的面积的和(朱实四) 加上中间小正方形的面积(黄实) 等于大正方形的面积(弦实)”. 若弦图中“弦实”为16,“朱实一”为
,现随机向弦图内投入一粒黄豆(大小忽略不计),则其落入小正方形内的概率为( )



A.![]() | B.![]() | C.![]() | D.![]() |
中国人民银行发行了2018中国戊戌(狗)年金银纪念币一套,如下图所示是一枚3克圆形金质纪念币,直径
,某同学为了算图中装饰狗的面积.他用1枚针向纪念币上投掷500次,其中针尖恰有150次落在装饰狗的身体上,据此可估计装饰狗的面积大约是( )



A.![]() | B.![]() | C.![]() | D.![]() |