- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- 古典概型
- + 几何概型
- 几何概型的特征
- 几何概型计算公式
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术;蕴含了极致的数学美和丰富的传统文化信息,现有一幅剪纸的设计图,其中的4个小圆均过正方形的中心,且内切于正方形的两邻边.若在正方形内随机取一点,则该点取自黑色部分的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,在边长为
的正方形内有不规则图形
,由电脑随机从正方形中抽取
个点,若落在图形
内和图形
外的点分别为
,则图形
面积的估计值为( )









A.![]() | B.![]() | C.![]() | D.![]() |
下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,
是等边三角形,其内部三个圆的半径相等,且圆心都在
的一条中线上.在三角形内任取一点,则该点取自阴影部分的概率为( )




A.![]() | B.![]() | C.![]() | D.![]() |
如图,
、
、
、
为正方形
各边上的点,图中曲线为圆弧,两圆弧分别以
、
为圆心,
、
为半径(
为正方形的中心).现向该正方形内随机抛掷
枚豆子,则该枚豆子落在阴影部分的概率为( )













A.![]() | B.![]() |
C.![]() | D.![]() |
如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )


A.![]() | B.![]() | C.![]() | D.![]() |
古希腊数学家阿基米德用穷竭法建立了这样的结论:“任何由直线和抛物线所包围的弓形,其面积都是其同底同高的三角形面积的三分之四.”如图,已知直线
交抛物线
于A,B两点,点A,B在y轴上的射影分别为D,C.从长方形ABCD中任取一点,则根据阿基米德这一理论,该点位于阴影部分的概率为( )




A.![]() | B.![]() | C.![]() | D.![]() |
公元前5世纪下半叶开奥斯地方的希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O为圆心的大圆直径为4,以AB为直径的半圆面积等于AO与BO所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自于阴影部分的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |