- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- 古典概型
- + 几何概型
- 几何概型的特征
- 几何概型计算公式
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
《周髀算经》是中国最古老的天文学和数学著作,是算经十书之一,书中不仅记载了“天圆如张盖,地方如棋局”一说,更是记载了借助“外圆内方“的钱币及用统计概率得到圆周率
的近似值的方法,具体做法如下,现有“外圆内方”的钱币(如图),测得钱币“外圆”半径(即圆的半径)为2cm,“内方”(即钱币中间的正方形孔)的边长为1cm,在圆内随机取点,若统计得到此点取“内方”之外部分的概率是p,则圆周率
的近似值为________.





古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段
分为两线段
,使得其中较长的一段
是全长
与另一段的比例中项,即满足
.后人把这个数称为黄金分割数,把点
称为线段
的黄金分割点.在
中,若点
为线段
的两个黄金分割点,在
内任取一点
,则点
落在
内的概率为( )
















A.![]() | B.![]() | C.![]() | D.![]() |
一个游戏转盘上有四种颜色:红、黄、蓝、黑,并且它们所占面积的比为6∶2∶1∶4,则指针停在红色或蓝色的区域的概率为()
A.![]() | B.![]() | C.![]() | D.![]() |
如图所示,EFGH是以O为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,事件A表示“豆子落在正方形EFGH内”,事件B表示“豆子落在扇形OHE(阴影部分)内”,则P(B|A)等于( )


A.![]() | B.![]() | C.![]() | D.![]() |