- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- 古典概型
- + 几何概型
- 几何概型的特征
- 几何概型计算公式
- 均匀随机数的产生
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角
中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在
中随机地选取
个点,其中有
个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为( )




A.![]() | B.![]() | C.![]() | D.![]() |
部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.

若在图④中随机选取-点,则此点取自阴影部分的概率为( )

若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
谋士梅长苏与侠女霓凰郡主约好在公元958年的某一天下午5点—6点之间在城门口见面,他们约定:谁先到谁先等20分钟,20分钟内不见另一人的到来则离去.请你计算他们能见面的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
某市1路公交车每日清晨6:30于始发站A站发出首班车,随后每隔10分钟发出下一班车.甲、乙二人某日早晨均需从A站搭乘该公交车上班,甲在6:35-6:55内随机到达A站候车,乙在6:50-7:05内随机到达A站候车,则他们能搭乘同一班公交车的概率是 ( )
A.![]() | B.![]() | C.![]() | D.![]() |
甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.