- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某大学的外文系有一个翻译小组,该小组中会法语不会英语的有1人,英语法语都会的有2人,从该小组任取2人,设
为选出的人中英语法语都会的人数,若
,则该小组的人数为( )


A.![]() | B.![]() | C.![]() | D.![]() |
某校高三有5名同学报名参加甲、乙、丙三所高校的自主招生考试,每人限报一所高校,则这三所高校中每个学校都至少有1名同学报考的概率为_______
某学校设有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两班学生中分别抽取8名和6名学生测试他们的数学与英语成绩(单位:分),用
表示,下面是乙班6名学生的测试分数:
,
,
,
,
,
,当学生的数学、英语成绩满足
,且
时,该学生定为优秀生.
(Ⅰ)已知甲班共有80名学生,用上述样本数估计乙班优秀生的数量;
(Ⅱ)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名为优秀生的概率;
(Ⅲ)用频率估计概率,从乙班学生中随机抽取2名,其中优秀生人数记为
,求
的分布列及其数学期望.









(Ⅰ)已知甲班共有80名学生,用上述样本数估计乙班优秀生的数量;
(Ⅱ)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名为优秀生的概率;
(Ⅲ)用频率估计概率,从乙班学生中随机抽取2名,其中优秀生人数记为


某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:
)频数分布表如表1、表2.
表1:男生身高频数分布表

表2:女生身高频数分布表

(1)求该校高一女生的人数;
(2)估计该校学生身高在
的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设
表示身高在
学生的人数,求
的分布列及数学期望.

表1:男生身高频数分布表

表2:女生身高频数分布表

(1)求该校高一女生的人数;
(2)估计该校学生身高在

(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设



某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:

(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
,

(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.


现有三张卡片,正面分别标有数字1,2,3,背面完全相同,将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
袋子中有大小、质地相同的红球、黑球各一个,现有放回地随机摸取3次,每次摸取一个球,若摸出红球,得10分,摸出黑球,得5分,则3次摸球所得总分至少是25分的概率是___.