- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 基本事件
- 古典概型的特征
- + 整数值随机数
- 随机数的认识
- 利用抽签法产生整数值随机数
- 用随机数表产生整数值随机数
- 利用计算器(机)产生整数值随机数
- 整数值随机模拟问题
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图所示,正方形的面积为
.在正方形内随机撒
粒豆子,恰好有
粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( )





A.![]() | B.![]() | C.![]() | D.![]() |
抛掷两枚质地均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每组中数字的个数为( )
A.1 | B.2 | C.10 | D.12 |
某种树苗的成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率.
问题
(1)用随机模拟方法估计概率时,如何用随机数体现树苗的成活率为0.9?
(2)用随机模拟方法估计概率时,如何用随机数体现种植这种树苗5棵?
问题
(1)用随机模拟方法估计概率时,如何用随机数体现树苗的成活率为0.9?
(2)用随机模拟方法估计概率时,如何用随机数体现种植这种树苗5棵?
袋子中有四个小球,分别写有“春、夏、秋、冬”四个字,从中任取一个小球,取到“冬”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“春、夏、秋、冬”四个字,每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:
13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
13 24 12 32 43 14 24 32 31 21 23 13 32 21 24 42 13 32 21 34
据此估计,直到第二次就停止的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
袋中有2个黑球,3个白球,除颜色外完全相同,从中有放回地取出一球,连取三次,观察球的颜色.用计算机产生0到9的数字进行模拟试验,用0,1,2,3代表黑球,4,5,6,7,8,9代表白球,在下列随机数中表示结果为二白一黑的组数为( )
160 288 905 467 589 239 079 146 351
160 288 905 467 589 239 079 146 351
A.3 | B.4 | C.5 | D.6 |
规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为
.现采用计算机做模拟实验来估计该选手获得优秀的概率: 用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数:
907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为( )

907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
某射击运动员每次击中目标的概率为0.8,现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:
根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.
7527 | 0293 | 7140 | 9857 | 0347 | 4373 | 8636 | 6947 | 1417 | 4698 |
0371 | 6233 | 2616 | 8045 | 6011 | 3661 | 9597 | 7424 | 7610 | 4281 |
根据以上数据估计该射击运动员射击4次至少击中3次的概率为_______.
天气预报说,在今后的三天中,每一天下雨的概率均为50%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用0,1,2,3,4表示下雨,用5,6,7,8,9表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
据此估计,这三天中恰有两天下雨的概率近似为
A.0.30 | B.0.35 |
C.0.40 | D.0.50 |
出一份
道题的数学试卷,试卷内的
道题是这样产生的:从含有
道选择题的题库中随机抽
道;从
道填空题的题库中随机抽
道;从
道解答题的题库中随机抽
道.使用合适的方法确定这套试卷的序号(选择题编号为
,填空题编号为
,解答题编号为
).










