- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余都相同的
个小球,这
个小球编号的茎叶图如图所示.
活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字
的奇数,则为一等奖,奖金为
元;若抽取的小球编号是十位数字为
的奇数,则为二等奖,奖金
元;若抽取的小球编号是其余号码则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.(1)求该顾客在两次抽奖中恰有一次中奖的概率;
(2)记该顾客两次抽奖后的奖金之和为随机变量
,求
的数学期望.



活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字




(2)记该顾客两次抽奖后的奖金之和为随机变量


某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查,根据从其中随机抽取的50份调查问卷,得到了如下的列联表.
(1)学校计划在同意限定区域停车的家长中,按照分层抽样的方法,随机抽取5人在上学、放学期间在学校门口参与维持秩序,在随机抽取的5人中,选出2人担任召集人,求至少有一名女性的概率?
(2)已知在同意限定区域停车的12位女性家长中,有3位日常开车接送孩子,现从这12位女性家长中随机抽取3人参与维持秩序,记参与维持秩序的女性家长中,日常开车接送孩子的女性家长人数为
,求
的分布列和数学期望.
| 同意限定区域停车 | 不同意限定区域停车 | 合计 |
男 | 18 | 7 | 25 |
女 | 12 | 13 | 25 |
合计 | 30 | 20 | 50 |
(1)学校计划在同意限定区域停车的家长中,按照分层抽样的方法,随机抽取5人在上学、放学期间在学校门口参与维持秩序,在随机抽取的5人中,选出2人担任召集人,求至少有一名女性的概率?
(2)已知在同意限定区域停车的12位女性家长中,有3位日常开车接送孩子,现从这12位女性家长中随机抽取3人参与维持秩序,记参与维持秩序的女性家长中,日常开车接送孩子的女性家长人数为


现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时抛掷自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个个继续坐着,那么,没有相邻的两个人站起来的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
,现有甲,乙二人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球即终止,每个球在每一次被取出的机会是等可能的.
(Ⅰ)求袋中原有白球的个数:
(Ⅱ)求取球次数
的分布列和数学期望.

(Ⅰ)求袋中原有白球的个数:
(Ⅱ)求取球次数

某人射击一次命中7—10环的概率如下表
计算这名射手在一次 射击中:
(1)射中9环或10环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率
命中环数 | 7 | 8 | 9 | 10 |
命中概率 | 0.16 | 0.19 | 0.28 | 0.24 |
计算这名射手在一次 射击中:
(1)射中9环或10环的概率;
(2)至少射中7环的概率;
(3)射中环数不足8环的概率
某单位附近只有甲、乙两个临时停车场,它们各有
个车位,为了方便市民停车,某互联网停车公司对这两个停车场,在某些固定时刻的剩余停车位进行记录,如下表:
如果表中某一时刻剩余停车位数低于该停车场总车位数的
,那么当车主驱车抵达单位附近时,该公司将会向车主发出停车场饱和警报.
(1)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;
(2)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;
(3)当乙停车场发出饱和警报时,求甲停车场也发出饱和警报的概率.

时间 停车场 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
甲停车场 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
乙停车场 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
如果表中某一时刻剩余停车位数低于该停车场总车位数的

(1)假设某车主在以上六个时刻抵达单位附近的可能性相同,求他收到甲停车场饱和警报的概率;
(2)从这六个时刻中任选一个时刻,求甲停车场比乙停车场剩余车位数少的概率;
(3)当乙停车场发出饱和警报时,求甲停车场也发出饱和警报的概率.