- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为
,第二次出的点数为
,且已知关于
、
的方程组
.
(1)求此方程组有解的概率;
(2)若记此方程组的解为
,求
且
的概率.





(1)求此方程组有解的概率;
(2)若记此方程组的解为



2019年12月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为
,某位患者在隔离之前,每天有
位密切接触者,其中被感染的人数为
,假设每位密切接触者不再接触其他患者.
(1)求一天内被感染人数为
的概率
与
、
的关系式和
的数学期望;
(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第
天新增患者的数学期望记为
.
(i)求数列
的通项公式,并证明数列
为等比数列;
(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率
,当
取最大值时,计算此时
所对应的
值和此时
对应的
值,根据计算结果说明戴口罩的必要性.(取
)
(结果保留整数,参考数据:
)



(1)求一天内被感染人数为





(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第


(i)求数列


(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率







(结果保留整数,参考数据:

某蔬菜批发商经销某种新鲜蔬菜(以下简称
蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的
蔬菜没有售完,则批发商将没售完的
蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把
蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100天
蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.

(1)若某天该蔬菜批发商共购入6袋
蔬菜,有4袋
蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?
(2)以上述样本数据作为决策的依据.
(i)若今年
蔬菜上市的100天内,该蔬菜批发商坚持每天购进6袋
蔬菜,试估计该蔬菜批发商经销
蔬菜的总盈利值;
(ii)若明年该蔬菜批发商每天购进
蔬菜的袋数相同,试帮其设计明年的
蔬菜的进货方案,使其所获取的平均利润最大.






(1)若某天该蔬菜批发商共购入6袋


(2)以上述样本数据作为决策的依据.
(i)若今年



(ii)若明年该蔬菜批发商每天购进


在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
(1)求选出的4名选手中恰好有一名女教师的选派方法数;
(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.
如图所示,正方形的面积为
.在正方形内随机撒
粒豆子,恰好有
粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( )





A.![]() | B.![]() | C.![]() | D.![]() |
抛掷两枚质地均匀的正方体骰子,用随机模拟方法估计出现点数之和为10的概率时,产生的整数随机数中,每组中数字的个数为( )
A.1 | B.2 | C.10 | D.12 |
小明家的晚报在下午
任何一个时间随机地被送到,他们一家人在下午
任何一个时间随机地开始晚餐.为了计算晚报在晚餐开始之前被送到的概率,某小组借助随机数表的模拟方法来计算概率,他们的具体做法是将每个1分钟的时间段看作个体进行编号,
编号为01,
编号为02,依此类推,
编号为90.在随机数表中每次选取一个四位数,前两位表示晚报时间,后两位表示晚餐时间,如果读取的四位数表示的晚报晚餐时间有一个不符合实际意义,视为这次读取的无效数据(例如下表中的第一个四位数7840中的78不符合晚报时间).按照从左向右,读完第一行,再从左向右读第二行的顺序,读完下表,用频率估计晚报在晚餐开始之前被送到的概率为








7840 1160 5054 3139 8082 7732 5034 3682 4829 4052 |
4201 6277 5678 5188 6854 0200 8650 7584 0136 7655 |
A.![]() | B.![]() | C.![]() | D.![]() |
下列有关古典概型的四种说法:
①试验中所有可能出现的样本点只有有限个;
②每个事件出现的可能性相等;
③每个样本点出现的可能性相等;
④已知样本点总数为
,若随机事件
包含
个样本点,则事件
发生的概率
.
其中所正确说法的序号是( )
①试验中所有可能出现的样本点只有有限个;
②每个事件出现的可能性相等;
③每个样本点出现的可能性相等;
④已知样本点总数为





其中所正确说法的序号是( )
A.①②④ | B.①③ | C.③④ | D.①③④ |