- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机事件的概率
- + 古典概型
- 基本事件
- 古典概型的特征
- 整数值随机数
- 几何概型
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小组有男、女学生共13人,现从中选2人去完成一项任务.设每人当选的可能性相同.
⑴若选出的两人性别相同的概率为
,求选出的两人性别不同的概率;
⑵若已知该班男生有9人,求选出的两人性别不同的概率.
⑴若选出的两人性别相同的概率为

⑵若已知该班男生有9人,求选出的两人性别不同的概率.
袋中装有大小相同且形状一样的四个球,四个球上分别标有“2”、“3”、“4”、“6”
这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率
是 ▲
这四个数.现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率
是 ▲
中小学校车安全引起全社会的关注,为了消除安全隐患,某市组织校车安全大检查,某校有甲、乙、丙、丁四辆车,分两天对其进行检测,每天检测两辆车,则甲、乙两辆车在同一天被检测的概率为 .
一个袋中装有大小相同的黑球、白球和红球. 已知袋中共有10个球,从中任意摸出1个球,得到黑球的概率是
,从中任意摸出2个球,至少得到1 个白球的概率是
. 求:
(1)从中任意摸出2个球,得到的都是黑球的概率;
(2)袋中白球的个数


(1)从中任意摸出2个球,得到的都是黑球的概率;
(2)袋中白球的个数
某班数学兴趣小组有男生3名,记为
,女生2名,记为
,现从中任选2名学生去参加校数学竞赛
⑴写出所有的基本事件
⑵求参赛学生中恰好有一名男生的概率
⑶求参赛学生中至少有一名男生的概率


⑴写出所有的基本事件
⑵求参赛学生中恰好有一名男生的概率
⑶求参赛学生中至少有一名男生的概率
设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
组成数对(
,并构成函数
(Ⅰ)写出所有可能的数对(
,并计算
,且
的概率;
(Ⅱ)求函数
在区间[
上是增函数的概率.




(Ⅰ)写出所有可能的数对(



(Ⅱ)求函数


盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品、
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品、
一盒中放有的黑球和白球,其中黑球4个,白球5个.
(1)从盒中同时摸出两个球,求两球颜色恰好相同的概率.
(2)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
(3)从盒中不放回的每次摸一球,若取到白球则停止摸球,求取到第三次时停止摸球的概率
(1)从盒中同时摸出两个球,求两球颜色恰好相同的概率.
(2)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.
(3)从盒中不放回的每次摸一球,若取到白球则停止摸球,求取到第三次时停止摸球的概率