- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 随机现象
- 频率与概率
- 生活中的概率
- 事件的关系与运算
- 互斥事件
- + 对立事件
- 互斥事件与对立事件关系的辨析
- 确定所给事件的对立关系
- 写出某事件的对立事件
- 利用对立事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若某群体中的成员只用现金支付的概率为0.15,既用现金支付也用非现金支付的概率为0.35,则仅用非现金支付的概率为( )
A.0.2 | B.0.4 | C.0.5 | D.0.8 |
青岛二中戏剧节中,6个MT除人文MT有两个节目参加决赛外,其他MT各有一个节目参加决赛,一共7个节目,在决赛中,要从这7支队伍中随机抽取两支队伍比赛,则人文MT两支队伍不同时被抽到的概率为( )
A.![]() | B.![]() | C.![]() | D.![]() |
一名工人维护3台独立的游戏机,一天内3台需要维护的概率分别为0.9、0.8和0.85,则一天内至少有一台游戏机不需要维护的概率为_____(结果用小数表示)
从甲口袋内摸出1个白球的概率是
,从乙口袋内摸出1个白球的概率是
,如果从两个口袋内各摸出一个球,那么
是 ( )



A.2个球不都是白球的概率 | B.2个球都不是白球的概率 |
C.2个球都是白球的概率 | D.2个球恰好有一个球是白球的概率 |
不透明的口袋内装有红色、绿色和蓝色卡片各2张,一次任意取出2张卡片,则与事件“2张卡片都为红色”互斥而非对立的事件是( ).
A.2张卡片都不是红色 | B.2张卡片恰有一张红色 |
C.2张卡片至少有一张红色 | D.2张卡片都为绿色 |
从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是
A.至少有一个黑球与都是黑球 | B.至少有一个黑球与至少有一个白球 |
C.恰好有一个黑球与恰好有两个黑球 | D.至少有一个黑球与都是白球 |
A盒中有3张足球票和3张篮球票,B盒中有2张足球票和4张篮球票,甲盒A中任意抽取一张票,乙从B盒中任取抽取一张票,则两人至少抽到一张足球票的概率为_________.
某校辨论队计划在周六、周日各参加一场辨论赛,分别由正、副队长负责,已知该校辩论队共有10位成员(包含正、副队长),每场比赛除负责人外均另需3位队员(同一队员可同时参加两天的比赛,正、副队长只能参加一场比赛).假设正副队长分别将各自比赛通知的信息独立、随机地发给辩论队8名队员中的3位,且所发信息都能收到.
(1)求辩论队员甲收到队长或副队长所发比赛通知信息的概率;
(2)记辩论队收到正副队长所发比赛通知信息的队员人数为随机变量
,求
的分布列及其数学期望.
(1)求辩论队员甲收到队长或副队长所发比赛通知信息的概率;
(2)记辩论队收到正副队长所发比赛通知信息的队员人数为随机变量

