- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列叙述错误的是( )
A.若事件![]() ![]() ![]() |
B.互斥事件不一定是对立事件,但是对立事件一定是互斥事件 |
C.两个对立事件的概率之和为1 |
D.对于任意两个事件![]() ![]() ![]() |
袋中装有3个黑球,4个白球,从中任取4个球,则
①至少有1个白球和至少有1个黑球;
②至少有2个白球和恰有3个黑球;
③至少有1个黑球和全是白球;
④恰有1个白球和至多有1个黑球.
在上述事件中,是互斥事件但不是对立事件的为( )
①至少有1个白球和至少有1个黑球;
②至少有2个白球和恰有3个黑球;
③至少有1个黑球和全是白球;
④恰有1个白球和至多有1个黑球.
在上述事件中,是互斥事件但不是对立事件的为( )
A.① | B.② | C.③ | D.④ |
从高二某班级中抽出三名学生.设事件甲为“三名学生全不是男生”,事件乙为“三名学生全是男生”,事件丙为“三名学生至少有一名是男生”,则( )
A.甲与丙互斥 | B.任何两个均互斥 | C.乙与丙互斥 | D.任何两个均不互斥 |
袋中装有黑、白两种颜色的球各三个,现从中取出两个球.设事件P表示“取出的都是黑球”;事件Q表示“取出的都是白球”;事件R表示“取出的球中至少有一个黑球”.则下列结论正确的是( )
A.P与R是互斥事件 | B.P与Q是对立事件 |
C.Q和R是对立事件 | D.Q和R是互斥事件,但不是对立事件 |
从装有6个红球和5个白球的口袋中任取4个球,那么下列是互斥而不对立的事件是( )
A.至少一个红球与都是红球 |
B.至少一个红球与至少一个白球 |
C.至少一个红球与都是白球 |
D.恰有一个红球与恰有两个红球 |
一箱产品中有正品4件,次品2件,从中任取2件,以下事件:①恰有1件次品和恰有2件次品;②至少有1件次品和全是次品;③至少有1件次品和全是正品,其中互斥事件为( )
A.① | B.①② | C.②③ | D.①③ |
从含有两件正品
,
和一件次品
的3件产品中每次任取1件,每次取出后放回,连续取两次,则取出的两件产品中恰有一件是次品的概率为






A.![]() | B.![]() | C.![]() | D.![]() |
一个均匀的正方体玩具的各面上分别标以数
(俗称骰子),将该玩具向上抛掷一次,设事件A表示向上的一面出现奇数(指向上的一面的数是奇数),事件B表示向上的一面的数不超过3,事件C表示向上的一面的数不少于4,则( )

A.A与B是互斥事件 | B.A与B是对立事件 |
C.B与C是对立事件 | D.A与C是对立事件 |
从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是( )
A.至少2个白球,都是红球 | B.至少1个白球,至少1个红球 |
C.至少2个白球,至多1个白球 | D.恰好1个白球,恰好2个红球 |
在试验E“连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A表示随机事件“第一次掷出的点数为1”,事件
表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j,事件B表示随机事件“2次掷出的点数之和为6”,事件C表示随机事件“第二次掷出的点数比第一次的大3”,
(1)试用样本点表示事件
与
;
(2)试判断事件A与B,A与C,B与C是否为互斥事件;
(3)试用事件
表示随机事件A.

(1)试用样本点表示事件


(2)试判断事件A与B,A与C,B与C是否为互斥事件;
(3)试用事件
