- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 判断所给事件是否是互斥关系
- 互斥事件的概率加法公式
- 利用互斥事件的概率公式求概率
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知事件M”3粒种子全部发芽”,事件N“3粒种子都不发芽”,那么事件M和N是( )
A.互斥且对立事件 | B.不是互斥事件 |
C.互斥但不对立事件 | D.对立事件 |
同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为____.

某个部件由三个元件按图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布
,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 


甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取岀一个球放入乙罐,分别以
,
,
表示由甲罐取岀的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以
表示由乙罐取出的球是红球的事件,下列结论中不正确的是( )




A.事件![]() ![]() | B.![]() ![]() ![]() |
C.![]() | D.![]() |
奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )


A.对立事件 | B.不可能事件 |
C.互斥但不对立事件 | D.不是互斥事件 |
某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是( )
A.“至少1名男生”与“全是女生” |
B.“至少1名男生”与“至少有1名是女生” |
C.“至少1名男生”与“全是男生” |
D.“恰好有1名男生”与“恰好2名女生” |
某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是
A.A和B为对立事件 | B.B和C为互斥事件 |
C.C与D是对立事件 | D.B与D为互斥事件 |
从装有
个红球和
个黒球的口袋内任取
个球,那么互斥而不对立的两个事件是()



A.至少有一个黒球与都是黒球 | B.至少有一个黒球与恰有![]() |
C.至少有一个黒球与至少有![]() | D.恰有![]() ![]() |